Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 10(1): 261, 2019 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-30651563

RESUMO

Bacterial growth and cell division requires precise spatiotemporal regulation of the synthesis and remodelling of the peptidoglycan layer that surrounds the cytoplasmic membrane. GpsB is a cytosolic protein that affects cell wall synthesis by binding cytoplasmic mini-domains of peptidoglycan synthases to ensure their correct subcellular localisation. Here, we describe critical structural features for the interaction of GpsB with peptidoglycan synthases from three bacterial species (Bacillus subtilis, Listeria monocytogenes and Streptococcus pneumoniae) and suggest their importance for cell wall growth and viability in L. monocytogenes and S. pneumoniae. We use these structural motifs to identify novel partners of GpsB in B. subtilis and extend the members of the GpsB interactome in all three bacterial species. Our results support that GpsB functions as an adaptor protein that mediates the interaction between membrane proteins, scaffolding proteins, signalling proteins and enzymes to generate larger protein complexes at specific sites in a bacterial cell cycle-dependent manner.


Assuntos
Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Ciclo Celular/metabolismo , Parede Celular/metabolismo , Listeria monocytogenes/metabolismo , Proteínas de Ligação às Penicilinas/metabolismo , Streptococcus pneumoniae/metabolismo , Fatores de Virulência/metabolismo , Motivos de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/isolamento & purificação , Divisão Celular , Cristalografia por Raios X , Citosol/metabolismo , Proteínas de Membrana/metabolismo , Mutagênese , Proteínas de Ligação às Penicilinas/química , Proteínas de Ligação às Penicilinas/genética , Proteínas de Ligação às Penicilinas/isolamento & purificação , Peptidoglicano/biossíntese , Domínios e Motivos de Interação entre Proteínas , Mapas de Interação de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Fatores de Virulência/química , Fatores de Virulência/genética , Fatores de Virulência/isolamento & purificação
2.
FEBS J ; 284(6): 851-867, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27862967

RESUMO

During growth and propagation, a bacterial cell enlarges and subsequently divides its peptidoglycan (PG) sacculus, a continuous mesh-like layer that encases the cell membrane to confer mechanical strength and morphological robustness. The mechanism of sacculus growth, how it is regulated and how it is coordinated with other cellular processes is poorly understood. In this article, we will discuss briefly the current knowledge of how cell wall synthesis is regulated, on multiple levels, from both sides of the cytoplasmic membrane. According to the current knowledge, cytosolic scaffolding proteins connect PG synthases with cytoskeletal elements, and protein phosphorylation regulates cell wall growth in Gram-positive species. PG-active enzymes engage in multiple protein-protein interactions within PG synthesis multienzyme complexes, and some of the interactions modulate activities. PG synthesis is also regulated by central metabolism, and by PG maturation through the action of PG hydrolytic enzymes. Only now are we beginning to appreciate how these multiple levels of regulating PG synthesis enable the cell to propagate robustly with a defined cell shape under different and variable growth conditions.


Assuntos
Parede Celular/genética , Escherichia coli/genética , Peptidoglicano/biossíntese , Membrana Celular/genética , Membrana Celular/metabolismo , Parede Celular/metabolismo , Citoesqueleto/genética , Citoesqueleto/metabolismo , Escherichia coli/crescimento & desenvolvimento , Complexos Multienzimáticos/genética , Peptidoglicano/metabolismo , Mapas de Interação de Proteínas/genética
3.
Microb Drug Resist ; 22(6): 446-60, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27257764

RESUMO

GpsB, a key regulator of cell division in Gram-positive bacteria, interacts with a key peptidoglycan synthase at the cell division septum, the penicillin binding protein PBP1 (a.k.a. PonA). Bacillus subtilis GpsB has been reported to interact with other components of the cell division machinery, including EzrA, MreC, and PrkC. In this study, we report an analysis of the arrangement of subunits in Listeria monocytogenes GpsB by small-angle X-ray scattering. The resulting model has an elongated shape with residues critical for interaction with PBP1 and the cell membrane clustered at one end of the molecule. Mutations that destabilize the hexameric assembly of the wild-type protein have a gpsB null phenotype, indicating that oligomerization is critical for the correct function of GpsB. We suggest a model in which a single GpsB hexamer can interact with multiple PBP1 molecules and can therefore influence the arrangement of PBP1 molecules within the cell division machinery, a dynamic multiprotein complex called the divisome, consistent with a role for GpsB in modulating the synthesis of the cell wall.


Assuntos
Parede Celular/metabolismo , Listeria monocytogenes/química , Proteínas de Membrana/química , Proteínas de Ligação às Penicilinas/química , Subunidades Proteicas/química , Bacillus subtilis/química , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Sítios de Ligação , Divisão Celular , Parede Celular/química , Expressão Gênica , Listeria monocytogenes/genética , Listeria monocytogenes/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Modelos Moleculares , Mutação , Proteínas de Ligação às Penicilinas/genética , Proteínas de Ligação às Penicilinas/metabolismo , Plasmídeos/química , Plasmídeos/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Estrutura Secundária de Proteína , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
4.
Mol Microbiol ; 99(5): 978-98, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26575090

RESUMO

Each bacterium has to co-ordinate its growth with division to ensure genetic stability of the population. Consequently, cell division and growth are tightly regulated phenomena, albeit different bacteria utilise one of several alternative regulatory mechanisms to maintain control. Here we consider GpsB, which is linked to cell growth and division in Gram-positive bacteria. ΔgpsB mutants of the human pathogen Listeria monocytogenes show severe lysis, division and growth defects due to distortions of cell wall biosynthesis. Consistent with this premise, GpsB interacts both in vitro and in vivo with the major bi-functional penicillin-binding protein. We solved the crystal structure of GpsB and the interaction interfaces in both proteins are identified and validated. The inactivation of gpsB results in strongly attenuated virulence in animal experiments, comparable in degree to classical listerial virulence factor mutants. Therefore, GpsB is essential for in vitro and in vivo growth of a highly virulent food-borne pathogen, suggesting that GpsB could be a target for the future design of novel antibacterials.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Listeria monocytogenes/fisiologia , Proteínas de Ligação às Penicilinas/química , Proteínas de Ligação às Penicilinas/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Divisão Celular/fisiologia , Parede Celular/metabolismo , Listeria monocytogenes/citologia , Listeria monocytogenes/genética , Listeria monocytogenes/metabolismo , Modelos Moleculares , Estrutura Secundária de Proteína , Relação Estrutura-Atividade , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
5.
Biochim Biophys Acta ; 1848(10 Pt A): 2206-15, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26051127

RESUMO

CorA channels are responsible for the uptake of essential magnesium ions by bacteria. X-ray crystal structures have been resolved for two full-length CorA channels, each in a non-conducting state with magnesium ions bound to the protein: These structures reveal a homo-pentameric quaternary structure with approximate 5-fold rotational symmetry about a central pore axis. We report the structure of the detergent solubilized Methanocaldococcus jannaschii CorA channel determined by Cryo-Electron Microscopy and Single Particle Averaging, supported by Small Angle X-ray Scattering and X-ray crystallography. This structure also shows a pentameric channel but with a highly asymmetric domain structure. The asymmetry of the domains includes differential separations between the trans-membrane segments, which reflects mechanical coupling of the cytoplasmic domain to the trans-membrane domain. This structure therefore reveals an important aspect of the gating mechanism of CorA channels by providing an indication of how the absence of magnesium ions leads to major structural changes.


Assuntos
Proteínas de Transporte de Cátions/química , Proteínas de Transporte de Cátions/ultraestrutura , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/ultraestrutura , Magnésio/química , Methanocaldococcus/química , Methanocaldococcus/ultraestrutura , Modelos Moleculares , Simulação por Computador , Microscopia Crioeletrônica/métodos , Modelos Químicos , Conformação Proteica
6.
Nat Commun ; 5: 5421, 2014 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-25403286

RESUMO

Bacterial cell division is facilitated by a molecular machine--the divisome--that assembles at mid-cell in dividing cells. The formation of the cytokinetic Z-ring by the tubulin homologue FtsZ is regulated by several factors, including the divisome component EzrA. Here we describe the structure of the 60-kDa cytoplasmic domain of EzrA, which comprises five linear repeats of an unusual triple helical bundle. The EzrA structure is bent into a semicircle, providing the protein with the potential to interact at both N- and C-termini with adjacent membrane-bound divisome components. We also identify at least two binding sites for FtsZ on EzrA and map regions of EzrA that are responsible for regulating FtsZ assembly. The individual repeats, and their linear organization, are homologous to the spectrin proteins that connect actin filaments to the membrane in eukaryotes, and we thus propose that EzrA is the founding member of the bacterial spectrin family.


Assuntos
Bacillus subtilis/citologia , Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , Citocinese , Espectrina/metabolismo , Bacillus subtilis/química , Bacillus subtilis/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sítios de Ligação , Cristalografia por Raios X , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Espectrina/química , Espectrina/genética
7.
Structure ; 22(7): 949-60, 2014 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-24909784

RESUMO

Peptidoglycan surrounds the bacterial cytoplasmic membrane to protect the cell against osmolysis. The biosynthesis of peptidoglycan, made of glycan strands crosslinked by short peptides, is the target of antibiotics like ß-lactams and glycopeptides. Nascent peptidoglycan contains pentapeptides that are trimmed by carboxypeptidases to tetra- and tripeptides. The well-characterized DD-carboxypeptidases hydrolyze the terminal D-alanine from the stem pentapeptide to produce a tetrapeptide. However, few LD-carboxypeptidases that produce tripeptides have been identified, and nothing is known about substrate specificity in these enzymes. We report biochemical properties and crystal structures of the LD-carboxypeptidases LdcB from Streptococcus pneumoniae, Bacillus anthracis, and Bacillus subtilis. The enzymes are active against bacterial cell wall tetrapeptides and adopt a zinc-carboxypeptidase fold characteristic of the LAS superfamily. We have also solved the structure of S. pneumoniae LdcB with a product mimic, elucidating the residues essential for peptidoglycan recognition and the conformational changes that occur on ligand binding.


Assuntos
Proteínas de Bactérias/química , Carboxipeptidases/química , Peptidoglicano/química , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Sequência de Aminoácidos , Bacillus anthracis/enzimologia , Bacillus subtilis/enzimologia , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Configuração de Carboidratos , Carboxipeptidases/metabolismo , Cristalografia por Raios X , Cinética , Modelos Moleculares , Peptidoglicano/metabolismo , Ligação Proteica , Streptococcus pneumoniae/enzimologia
8.
Microb Drug Resist ; 18(3): 240-55, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22432711

RESUMO

Streptococcus pneumoniae protects itself from components of the human immune defense system by a thick polysaccharide capsule, which in most serotypes is covalently attached to the cell wall peptidoglycan. Members of the LytR-Cps2A-Psr (LCP) protein family have recently been implicated in the attachment of anionic polymers to peptidoglycan in Gram-positive bacteria, based on genetic evidence from Bacillus subtilis mutant strains and on the crystal structure of S. pneumoniae Cps2A containing a tightly bound polyprenol (pyro)phosphate lipid. Here, we provide evidence that Cps2A and its two pneumococcal homologs, LytR and Psr, contribute to the maintenance of normal capsule levels and to the retention of the capsular polysaccharide at the cell wall in the capsular type 2 S. pneumoniae strain D39. GFP fusions of all three LCP proteins showed enhanced localization at mid-cell, indicating a role in cell wall growth. Single cps2A or psr mutants produced a reduced amount of capsule. A cps2A lytR double mutant showed greatly impaired growth and cell morphology and lost approximately half of the total capsule material into the culture supernatant. We also present the crystal structure of the B. subtilis LCP protein YwtF and provide crystallographic evidence for the phosphotransferase activity of Cps2A, supporting an enzymatic function in the attachment of capsular polysaccharides to cell wall peptidoglycan.


Assuntos
Proteínas de Bactérias/química , Parede Celular/química , Peptidoglicano/metabolismo , Fosfotransferases/química , Streptococcus pneumoniae/metabolismo , Bacillus subtilis/química , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Cápsulas Bacterianas/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cristalografia por Raios X , Proteínas de Fluorescência Verde , Humanos , Microscopia de Fluorescência , Modelos Moleculares , Mutação , Peptidoglicano/química , Peptidoglicano/genética , Fosfotransferases/genética , Fosfotransferases/metabolismo , Proteínas Recombinantes de Fusão , Streptococcus pneumoniae/química , Streptococcus pneumoniae/genética , Transformação Bacteriana
9.
EMBO J ; 30(24): 4931-41, 2011 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-21964069

RESUMO

Teichoic acids and acidic capsular polysaccharides are major anionic cell wall polymers (APs) in many bacteria, with various critical cell functions, including maintenance of cell shape and structural integrity, charge and cation homeostasis, and multiple aspects of pathogenesis. We have identified the widespread LytR-Cps2A-Psr (LCP) protein family, of previously unknown function, as novel enzymes required for AP synthesis. Structural and biochemical analysis of several LCP proteins suggest that they carry out the final step of transferring APs from their lipid-linked precursor to cell wall peptidoglycan (PG). In Bacillus subtilis, LCP proteins are found in association with the MreB cytoskeleton, suggesting that MreB proteins coordinate the insertion of the major polymers, PG and AP, into the cell wall.


Assuntos
Bacillus subtilis/enzimologia , Proteínas de Bactérias/química , Parede Celular/química , Polissacarídeos/biossíntese , Ácidos Teicoicos/biossíntese , Bacillus subtilis/genética , Bacillus subtilis/ultraestrutura , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Parede Celular/genética , Parede Celular/metabolismo , Citoesqueleto/química , Citoesqueleto/metabolismo , Citoesqueleto/ultraestrutura , Genes Letais , Mutação , Polissacarídeos/química , Polissacarídeos/genética , Ácidos Teicoicos/química , Ácidos Teicoicos/genética
10.
Mol Membr Biol ; 25(8): 653-63, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19039701

RESUMO

The Thermofluor assay has been a valuable asset in structural genomics, providing a high-throughput method for assessing the crystallizability of proteins. The technique has been well characterized for soluble proteins but has been less extensively described for membrane proteins. Here we show the successful application of a Thermofluor-based stability assay to an ion channel, CorA from Methanococcus jannaschii. Optimization of the concentration of free detergent within the assay was important, as excessive concentrations mask the fluorescence change associated with thermal unfolding of the protein. CorA was shown to be stabilized by low pH, but relatively insensitive to salt concentration. Divalent metal cations were also capable of stabilizing the protein, in the order Co2+>Ni2+>Mn2+>Mg2+>Ca2+. Finally, removal of the oligohistidine tag was also shown to improve the thermal stability of CorA. Conclusions are drawn from this detailed study about the general applicability of this technique to other membrane proteins.


Assuntos
Proteínas Arqueais/química , Proteínas de Transporte de Cátions/química , Mathanococcus/química , Cátions Bivalentes , Cristalização , Detergentes , Concentração de Íons de Hidrogênio , Modelos Moleculares , Reação em Cadeia da Polimerase , Conformação Proteica , Desnaturação Proteica , Estabilidade Proteica , Estrutura Quaternária de Proteína , Temperatura
11.
Mol Biol Cell ; 17(12): 5063-74, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16987964

RESUMO

Structural studies on various domains of the ribonucleoprotein signal recognition particle (SRP) have not converged on a single complete structure of bacterial SRP consistent with the biochemistry of the particle. We obtained a three-dimensional structure for Escherichia coli SRP by cryoscanning transmission electron microscopy and mapped the internal RNA by electron spectroscopic imaging. Crystallographic data were fit into the SRP reconstruction, and although the resulting model differed from previous models, they could be rationalized by movement through an interdomain linker of Ffh, the protein component of SRP. Fluorescence resonance energy transfer experiments determined interdomain distances that were consistent with our model of SRP. Docking our model onto the bacterial ribosome suggests a mechanism for signal recognition involving interdomain movement of Ffh into and out of the nascent chain exit site and suggests how SRP could interact and/or compete with the ribosome-bound chaperone, trigger factor, for a nascent chain during translation.


Assuntos
Escherichia coli/ultraestrutura , Microscopia Eletrônica de Transmissão e Varredura/métodos , Partícula de Reconhecimento de Sinal/ultraestrutura , Transferência Ressonante de Energia de Fluorescência , Microscopia Eletrônica de Transmissão por Filtração de Energia , Modelos Moleculares , Estrutura Terciária de Proteína , Subunidades Proteicas/química , RNA Bacteriano/química , Ribossomos/metabolismo , Soluções
12.
J Biol Chem ; 277(48): 46763-8, 2002 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-12244111

RESUMO

We present evidence that the signal recognition particle (SRP) recognizes signal sequences via the NG domain on the SRP54 protein subunit. Using a recently developed cross-linking method (Fancy, D. A., and Kodadek, T. (1999) Proc. Natl. Acad. Sci. U. S. A. 96, 6020-6024; Correction (1999) Proc. Natl. Acad. Sci. U. S. A. 96, 1317), we find that signal peptides cross-link to the Escherichia coli SRP protein Ffh (the homologue of the mammalian SRP54 subunit) via the NG domain. Within the NG domain, the cross-linking site maps to the ras-like C-terminal subdomain termed the G domain. This result stands in contrast to previous studies, which concluded based on nascent chain cross-linking that the signal sequence bound to the adjacent M domain. As independent evidence of a direct binding interaction between the NG domain and the signal sequence, we find that the NG domain of Ffh binds signal peptides as an isolated entity. Our results suggest that the NG domain forms a substantial part of the binding site for the signal sequence.


Assuntos
Partícula de Reconhecimento de Sinal/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Modelos Moleculares , Dados de Sequência Molecular , Sinais Direcionadores de Proteínas , Partícula de Reconhecimento de Sinal/química
13.
Chem Rev ; 98(7): 2495-2526, 1998 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-11848969
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA