Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Anal Toxicol ; 47(9): 850-857, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37758448

RESUMO

ostmortem redistribution (PMR), a well-known phenomenon in forensic toxicology, can result in substantial changes in drug concentrations after death, depending on the chemical characteristics of the drug, blood collection site, storage conditions of the body and postmortem interval (PMI). Limited PMR data are available for ∆9-tetrahydrocannabinol (THC), the primary psychoactive component in Cannabis sativa. PMR was evaluated after controlled cannabis inhalation via a smoking machine and exposure chamber in New Zealand white rabbits. Necropsies were performed on five control rabbits immediately after euthanasia, whereas 27 others were stored at room temperature (21°C) or refrigerated conditions (4°C) until necropsy at 2, 6, 16, 24 or 36 h after death. THC and its Phase I and glucuronidated Phase II metabolites were quantified in blood, vitreous humor, urine, bile and tissues by liquid chromatography-tandem mass spectrometry (LC-MS-MS). Under refrigerated temperature, heart blood THC concentrations significantly increased at PMI 2 h in rabbits, whereas peripheral blood THC concentrations showed a significant increase at PMI 16 h. Central:peripheral blood and liver:peripheral blood ratios for THC ranged from 0.13 to 4.1 and 0.28 to 8.9, respectively. Lung revealed the highest THC concentrations, while brain and liver exhibited the most stable THC concentrations over time. This report contributes much needed data to our understanding of postmortem THC behavior and can aid toxicologists in the interpretation of THC concentrations in medicolegal death investigations.


Assuntos
Cannabis , Alucinógenos , Coelhos , Animais , Cannabis/toxicidade , Dronabinol/análise , Temperatura , Autopsia , Mudanças Depois da Morte
2.
Forensic Sci Int ; 329: 111075, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34749280

RESUMO

The primary psychoactive component of cannabis, Δ9-tetrahydrocannabinol (THC) impairs cognitive function and psychomotor performance, particularly for complex tasks like piloting an aircraft. The Federal Aviation Administration's (FAA) Forensic Sciences Section at the Civil Aerospace Medical Institute (Oklahoma City, OK) performs toxicological analyses on pilots fatally injured in general aviation incidents, permitting cannabinoids measurement in a broad array of postmortem biological specimens. Cannabinoid concentrations in postmortem fluids and tissues from 10 pilots involved in airplane crashes are presented. Median (range) THC blood concentration was 1.6 (1.0-13.7) ng/mL. Phase I metabolites, 11-hydroxy-THC (11-OH-THC) and 11-nor-9-carboxy-THC (THCCOOH) and phase II glucuronide metabolite, THCCOOH-glucuronide, had median (range) blood concentrations of 1.4 (0.5-1.8), 9.9 (2.2-72.6) and 36.6 (7.1-160) ng/mL, respectively. Urine analyses revealed positive results for THCCOOH, THC-glucuronide, THCCOOH-glucuronide and 11-nor-9-carboxy-Δ9-tetrahydrocannabivarin (THCVCOOH). THC was readily distributed to lung, brain, kidney, spleen and heart. The psychoactive metabolite, 11-OH-THC, was identified in liver and brain with median (range) concentrations 7.1 (3.5-10.5) and 2.4 (2.0-6.0) ng/g, respectively. Substantial THCCOOH and THCCOOH-glucuronide concentrations were observed in liver, lung, brain, kidney, spleen and heart. These cannabinoid concentrations from multiple types of postmortem specimens add to the limited postmortem cannabinoid research data and suggest useful biological matrices for investigating cannabinoid-related deaths.


Assuntos
Canabinoides , Pilotos , Canabinoides/metabolismo , Dronabinol , Glucuronídeos , Humanos , Detecção do Abuso de Substâncias
3.
J Chromatogr A ; 1652: 462345, 2021 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-34198104

RESUMO

Cannabis sativa is commonly used worldwide and is frequently detected by forensic laboratories working with biological specimens from potentially impaired drivers or pilots. To address the problem of limited published methods for cannabinoids quantification in postmortem specimens, a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed and validated to quantify Δ9-tetrahydrocannabinol (THC), 11-hydroxy-THC (11-OH-THC), 11-nor-9-carboxy-THC (THCCOOH), 8ß,11-dihydroxy-THC (8ß-diOH-THC), 8ß-hydroxy-THC (8ß-OH-THC), THC-glucuronide (THC-g), THCCOOH-glucuronide (THCCOOH-g), cannabidiol (CBD), cannabinol (CBN), cannabigerol (CBG), Δ9-tetrahydrocannabivarin (THCV), and 11-nor-9-carboxy-THCV (THCVCOOH). Solid phase extraction concentrated analytes prior to analysis on a biphenyl column coupled to a mass spectrometer in electrospray positive ionization mode using multiple reaction monitoring. Linearity ranged from 0.25-50 ng/mL (THC-g), 0.5-100 ng/mL (CBN), 0.5-250 ng/mL (THC, 11-OH-THC, THCCOOH, CBD, and CBG), 1-100 ng/mL (8ß-diOH-THC, THCVCOOH, 8ß-OH-THC, and THCV) and 1-250 ng/mL (THCCOOH-g). Within-run imprecision was <11.2% CV, between-run imprecision <18.1% CV, and bias was less than ±15.1% of target concentration in blood for all cannabinoids at three concentrations. No carryover or interferences were observed. All cannabinoids were stable in blood at room temperature for 24 h, refrigerated (4°C) for 96 h, and following three freeze/thaw cycles. Matrix effects greater than 25% were observed for most analytes in tissues. The proof of concept for method applicability involved measurement of cannabinoids in a pilot fatally injured in an aviation crash. This new analytical method is robust and sensitive, enabling collection of additional cannabinoid postmortem distribution data to improve interpretation of postmortem cannabinoid results.


Assuntos
Líquidos Corporais , Canabinoides , Técnicas de Química Analítica , Cromatografia Líquida , Espectrometria de Massas em Tandem , Líquidos Corporais/química , Canabidiol/análise , Canabinoides/análise , Técnicas de Química Analítica/métodos , Dronabinol/análise , Humanos
4.
J Forensic Sci ; 62(1): 164-168, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27907237

RESUMO

Prevalence of tricyclic antidepressants (TCAs) has not been explored in pilots. The National Transportation Safety Board (NTSB) aviation accident and the Federal Aviation Administration's Civil Aerospace Medical Institute (CAMI) toxicology and medical certification databases were searched for pilots fatally injured in aviation accidents. During 1990-2012, CAMI received bio-samples of pilots from 7037 aviation accidents. Of these, 2644 cases were positive for drugs. TCAs were present in 31. TCA blood concentrations ranged from therapeutic to toxic levels. The NTSB determined that the use of drugs and ethanol as the probable cause or contributing factor in 35% (11 of 31) of the accidents. None of the 31 pilots reported the use of TCAs during their aviation medical examination. The prevalence of TCAs in aviators was less than 0.5% (31 of 7037 cases). There is a need for aviators to fully disclose the use of medications at the time of their medical examination.


Assuntos
Acidentes Aeronáuticos/estatística & dados numéricos , Antidepressivos Tricíclicos/sangue , Pilotos/estatística & dados numéricos , Adulto , Idoso , Idoso de 80 Anos ou mais , Bases de Dados Factuais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Preparações Farmacêuticas/sangue , Detecção do Abuso de Substâncias , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA