Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 7(12): e50989, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23236417

RESUMO

The genome of Lactococcus lactis strain IL1403 harbors a putative pilus biogenesis cluster consisting of a sortase C gene flanked by 3 LPxTG protein encoding genes (yhgD, yhgE, and yhhB), called here pil. However, pili were not detected under standard growth conditions. Over-expression of the pil operon resulted in production and display of pili on the surface of lactococci. Functional analysis of the pilus biogenesis machinery indicated that the pilus shaft is formed by oligomers of the YhgE pilin, that the pilus cap is formed by the YhgD pilin and that YhhB is the basal pilin allowing the tethering of the pilus fibers to the cell wall. Oligomerization of pilin subunits was catalyzed by sortase C while anchoring of pili to the cell wall was mediated by sortase A. Piliated L. lactis cells exhibited an auto-aggregation phenotype in liquid cultures, which was attributed to the polymerization of major pilin, YhgE. The piliated lactococci formed thicker, more aerial biofilms compared to those produced by non-piliated bacteria. This phenotype was attributed to oligomers of YhgE. This study provides the first dissection of the pilus biogenesis machinery in a non-pathogenic Gram-positive bacterium. Analysis of natural lactococci isolates from clinical and vegetal environments showed pili production under standard growth conditions. The identification of functional pili in lactococci suggests that the changes they promote in aggregation and biofilm formation may be important for the natural lifestyle as well as for applications in which these bacteria are used.


Assuntos
Biofilmes/crescimento & desenvolvimento , Fímbrias Bacterianas/metabolismo , Lactococcus lactis/metabolismo , Aminoaciltransferases/genética , Aminoaciltransferases/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Parede Celular/genética , Parede Celular/metabolismo , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo , Proteínas de Fímbrias/genética , Proteínas de Fímbrias/metabolismo , Fímbrias Bacterianas/genética , Lactococcus lactis/genética
3.
BMC Microbiol ; 8: 22, 2008 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-18230145

RESUMO

BACKGROUND: Soya and its derivatives represent nutritionally high quality food products whose major drawback is their high content of alpha-galacto-oligosaccharides. These are not digested in the small intestine due to the natural absence of tissular alpha-galactosidase in mammals. The passage of these carbohydrates to the large intestine makes them available for fermentation by gas-producing bacteria leading to intestinal flatulence. The aim of the work reported here was to assess the ability of alpha-galactosidase-producing lactobacilli to improve the digestibility of alpha-galacto-oligosaccharides in situ. RESULTS: Gnotobiotic rats were orally fed with soy milk and placed in respiratory chambers designed to monitor fermentative gas excretion. The validity of the animal model was first checked using gnotobiotic rats monoassociated with a Clostridium butyricum hydrogen (H2)-producing strain. Ingestion of native soy milk by these rats caused significant H2 emission while ingestion of alpha-galacto-oligosaccharide-free soy milk did not, thus validating the experimental system. When native soy milk was fermented using the alpha-galactosidase-producing Lactobacillus fermentum CRL722 strain, the resulting product failed to induce H2 emission in rats thus validating the bacterial model. When L. fermentum CRL722 was coadministered with native soy milk, a significant reduction (50 %, P = 0.019) in H2 emission was observed, showing that alpha-galactosidase from L. fermentum CRL722 remained active in situ, in the gastrointestinal tract of rats monoassociated with C. butyricum. In human-microbiota associated rats, L. fermentum CRL722 also induced a significant reduction of H2 emission (70 %, P = 0.004). CONCLUSION: These results strongly suggest that L. fermentum alpha-galactosidase is able to partially alleviate alpha-galactosidase deficiency in rats. This offers interesting perspectives in various applications in which lactic acid bacteria could be used as a vector for delivery of digestive enzymes in man and animals.


Assuntos
Microbiologia de Alimentos , Hidrogênio/metabolismo , Limosilactobacillus fermentum , Oligossacarídeos/metabolismo , Probióticos , Leite de Soja/metabolismo , alfa-Galactosidase/metabolismo , Animais , Clostridium butyricum/metabolismo , Fermentação , Vida Livre de Germes , Hidrogênio/análise , Limosilactobacillus fermentum/metabolismo , Masculino , Ratos , Ratos Endogâmicos F344
4.
Appl Environ Microbiol ; 69(12): 7281-8, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14660377

RESUMO

The food grade bacterium Lactococcus lactis is a potential vehicle for protein delivery in the gastrointestinal tract. As a model, we constructed lactococcal strains producing antigens of infectious bursal disease virus (IBDV). IBDV infects chickens and causes depletion of B-lymphoid cells in the bursa of Fabricius and subsequent immunosuppression, morbidity, or acute mortality. The two major IBDV antigens, i.e., VP2 and VP3, that form the viral capsid were expressed and targeted to the cytoplasm, the cell wall, or the extracellular compartment of L. lactis. Whereas VP3 was successfully targeted to the three compartments by the use of relevant expression and export vectors, VP2 was recalcitrant to export, thus confirming the difficulty of translocating naturally nonsecreted proteins across the bacterial membrane. This defect could be partly overcome by fusing VP2 to a naturally secreted protein (the staphylococcal nuclease Nuc) that carried VP2 through the membrane. Lactococcal strains producing Nuc-VP2 and VP3 in various bacterial compartments were administered orally to chickens. The chickens did not develop any detectable immune response against VP2 and VP3 but did exhibit an immune response against Nuc when Nuc-VP2 was anchored to the cell wall of lactococci.


Assuntos
Vírus da Doença Infecciosa da Bursa/imunologia , Lactococcus lactis/genética , Doenças das Aves Domésticas/prevenção & controle , Proteínas Estruturais Virais/metabolismo , Vacinas Virais , Animais , Antígenos Virais/genética , Antígenos Virais/metabolismo , Infecções por Birnaviridae/prevenção & controle , Parede Celular/metabolismo , Galinhas , Meios de Cultivo Condicionados , Citoplasma/metabolismo , Imunização , Lactococcus lactis/imunologia , Nuclease do Micrococo/genética , Nuclease do Micrococo/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Proteínas Recombinantes de Fusão/metabolismo , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/imunologia , Proteínas Estruturais Virais/genética , Proteínas Estruturais Virais/imunologia , Vacinas Virais/administração & dosagem , Vacinas Virais/genética , Vacinas Virais/imunologia , Vacinas Virais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA