Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 27(31): 38631-38643, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32623683

RESUMO

The Moravian-Silesian region of the Czech Republic with its capital city Ostrava is a European air pollution hot spot for airborne particulate matter (PM). Therefore, the spatiotemporal variability assessment of source contributions to aerosol particles is essential for the successful abatement strategies implementation. Positive Matrix Factorization (PMF) was applied to highly-time resolved PM0.15-1.15 chemical composition (1 h resolution) and particle number size distribution (PNSD, 14 nm - 10 µm) data measured at the suburban (Ostrava-Plesná) and urban (Ostrava-Radvanice) residential receptor sites in parallel during an intensive winter campaign. Diel patterns, meteorological variables, inorganic and organic markers, and associations between the chemical composition factors and PNSD factors were used to identify the pollution sources and their origins (local, urban agglomeration and regional). The source apportionment analysis resolved six and four PM0.15-1.15 sources in Plesná and Radvanice, respectively. In Plesná, local residential combustion sources (coal and biomass combustion) followed by regional combustion sources (residential heating, metallurgical industry) were the main contributors to PM0.15-1.15. In Radvanice, local residential combustion and the metallurgical industry were the most important PM0.15-1.15 sources. Aitken and accumulation mode particles emitted by local residential combustion sources along with common urban sources (residential heating, industry and traffic) were the main contributors to the particle number concentration (PNC) in Plesná. Additionally, accumulation mode particles from local residential combustion sources and regional pollution dominated the particle volume concentration (PVC). In Radvanice, local industrial sources were the major contributors to PNC and local coal combustion was the main contributor to PVC. The source apportionment results from the complementary datasets elucidated the relevance of highly time-resolved parallel measurements at both receptor sites given the specific meteorological conditions produced by the regional orography. These results are in agreement with our previous studies conducted at this site. Graphical abstract.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar/análise , Aerossóis/análise , Cidades , República Tcheca , Monitoramento Ambiental , Tamanho da Partícula , Material Particulado/análise
2.
Anal Chem ; 84(22): 9858-64, 2012 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-23110367

RESUMO

Aerosol particles in the atmosphere strongly influence the Earth's climate and human health, but the quantification of their effects is highly uncertain. The complex and variable composition of atmospheric particles is a main reason for this uncertainty. About half of the particle mass is organic material, which is very poorly characterized on a molecular level, and therefore it is challenging to identify sources and atmospheric transformation processes. We present here a new combination of techniques for highly time-resolved aerosol sampling using a rotating drum impactor (RDI) and organic chemical analysis using direct liquid extraction surface analysis (LESA) combined with ultrahigh-resolution mass spectrometry. This minimizes sample preparation time and potential artifacts during sample workup compared to conventional off-line filter or impactor sampling. Due to the high time resolution of about 2.5 h intensity correlations of compounds detected in the high-resolution mass spectra were used to identify groups of compounds with likely common sources or atmospheric history.


Assuntos
Aerossóis , Espectrometria de Massas/instrumentação , Meteorologia , Compostos Orgânicos/química , Propriedades de Superfície , Fatores de Tempo
3.
Environ Sci Technol ; 44(23): 8911-6, 2010 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-21033735

RESUMO

During the last two decades, expanding industrial activity in east Asia has led to increased production of airborne pollutants that can be transported to North America. Previous efforts to detect this trans-Pacific pollution have relied upon remote sensing and remote sample locations. We tested whether Pb isotope ratios in airborne particles can be used to directly evaluate the Asian contribution to airborne particles of anthropogenic origin in western North America, using a time series of samples from a pair of sites upwind and downwind of the San Francisco Bay Area. Our results for airborne Pb at these sites indicate a median value of 29% Asian origin, based on mixing relations between distinct regional sample groups. This trans-Pacific Pb is present in small quantities but serves as a tracer for airborne particles within the growing Asian industrial plume. We then applied this analysis to archived samples from urban sites in central California. Taken together, our results suggest that the analysis of Pb isotopes can reveal the distribution of airborne particles affected by Asian industrial pollution at urban sites in northern California. Under suitable circumstances, this analysis can improve understanding of the global transport of pollution, independent of transport models.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Chumbo/análise , Material Particulado/análise , Movimentos do Ar , Poluição do Ar/estatística & dados numéricos , Ásia , California , Cidades , Isótopos/análise
4.
Environ Sci Technol ; 44(7): 2542-8, 2010 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-20192253

RESUMO

Atmospheric particles collected during the ICARTT 2004 field experiment at ground based sites at Appledore Island (AI), New Hampshire, Chebogue Point (CP), Nova Scotia, and aboard the R/V Ronald Brown (RB) were analyzed using Fourier transform infrared (FTIR) spectroscopy to quantify organic mass (OM) and organic functional groups. Several of these spectra contain a unique absorbance peak at 3500 cm(-1). Laboratory calibrations identify this peak with phenol functional groups. The phenol groups are associated with seawater-derived emissions based on correlations with tracer volatile organic compounds (VOCs) and ions, and potential source contribution function (PSCF) analysis. On the basis of the measured absorptivities, the project average phenol group concentrations are 0.24 +/- 0.18 microg m(-3) (4% of the total OM) at AI, 0.10 +/- 0.6 microg m(-3) (5% of the total OM) at CP, and 0.08 +/- 0.09 microg m(-3) (2% of the total OM) on board the RB, with detection limits typically between 0.06 and 0.11 microg m(-3). The spectra were partitioned into three primary factors using positive matrix factorization (PMF) sufficient to explain more than 95% of the measured OM. The fossil fuel combustion factor contributed 40% (AI), 34% (CP), and 43% (RB) of the total OM; the terrestrial biogenic factor contributed 20% (AI), 30% (CP), and 27% (RB). The seawater-derived factor contributed 40% (AI), 36% (CP) and 29% (RB) of the OM and showed similar correlations to tracers as the phenol group.


Assuntos
Aerossóis/química , Poluentes Atmosféricos/análise , Tamanho da Partícula , Fenóis/análise , Água do Mar/química , Calibragem , Radical Hidroxila/análise , New England , Padrões de Referência , Espectroscopia de Infravermelho com Transformada de Fourier , Fatores de Tempo
5.
Environ Sci Technol ; 43(21): 8072-8, 2009 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-19924925

RESUMO

Hourly trace element measurements were performed in an urban street canyon and next to an interurban freeway in Switzerland during more than one month each, deploying a rotating drum impactor (RDI) and subsequent sample analysis by synchrotron radiation X-ray fluorescence spectrometry (SR-XRF). Antimony and other brake wear associated elements were detected in three particle size ranges (2.5-10, 1-2.5, and 0.1-1 microm). The hourly measurements revealed that the effect of resuspended road dust has to be taken into account for the calculation of vehicle emission factors. Individual values for light and heavy duty vehicles were obtained for stop-and-go traffic in the urban street canyon. Mass based brake wear emissions were predominantly found in the coarse particle fraction. For antimony, determined emission factors were 11 +/- 7 and 86 +/- 42 microg km(-1) vehicle(-1) for light and heavy duty vehicles, respectively. Antimony emissions along the interurban freeway with free-flowing traffic were significantly lower. Relative patterns for brake wear related elements were very similar for both considered locations. Beside vehicle type specific brake wear emissions, road dust resuspension was found to be a dominant contributor of antimony in the street canyon.


Assuntos
Poluentes Atmosféricos/análise , Antimônio/análise , Veículos Automotores , Tamanho da Partícula , Oligoelementos/análise , Emissões de Veículos/análise , Poluentes Atmosféricos/química , Estações do Ano , Suíça , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...