Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neuroinflammation ; 21(1): 45, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38331902

RESUMO

BACKGROUND: Sepsis has a high mortality rate due to multiple organ failure. However, the influence of peripheral inflammation on brainstem autonomic and respiratory circuits in sepsis is poorly understood. Our working hypothesis is that peripheral inflammation affects central autonomic circuits and consequently contributes to multiorgan failure in sepsis. METHODS: In an Escherichia coli (E. coli)-fibrin clot model of peritonitis, we first recorded ventilatory patterns using plethysmography before and 24 h after fibrin clot implantation. To assess whether peritonitis was associated with brainstem neuro-inflammation, we measured cytokine and chemokine levels in Luminex assays. To determine the effect of E. coli peritonitis on brainstem function, we assessed sympatho-respiratory nerve activities at baseline and during brief (20 s) hypoxemic ischemia challenges using in situ-perfused brainstem preparations (PBPs) from sham or infected rats. PBPs lack peripheral organs and blood, but generate vascular tone and in vivo rhythmic activities in thoracic sympathetic (tSNA), phrenic and vagal nerves. RESULTS: Respiratory frequency was greater (p < 0.001) at 24 h post-infection with E. coli than in the sham control. However, breath-by-breath variability and total protein in the BALF did not differ. IL-1ß (p < 0.05), IL-6 (p < 0.05) and IL-17 (p < 0.04) concentrations were greater in the brainstem of infected rats. In the PBP, integrated tSNA (p < 0.05) and perfusion pressure were greater (p < 0.001), indicating a neural-mediated pathophysiological high sympathetic drive. Moreover, respiratory frequency was greater (p < 0.001) in PBPs from infected rats than from sham rats. Normalized phase durations of inspiration and expiration were greater (p < 0.009, p < 0.015, respectively), but the post-inspiratory phase (p < 0.007) and the breath-by-breath variability (p < 0.001) were less compared to sham PBPs. Hypoxemic ischemia triggered a biphasic response, respiratory augmentation followed by depression. PBPs from infected rats had weaker respiratory augmentation (p < 0.001) and depression (p < 0.001) than PBPs from sham rats. In contrast, tSNA in E. coli-treated PBPs was enhanced throughout the entire response to hypoxemic ischemia (p < 0.01), consistent with sympathetic hyperactivity. CONCLUSION: We show that peripheral sepsis caused brainstem inflammation and impaired sympatho-respiratory motor control in a single day after infection. We conclude that central sympathetic hyperactivity may impact vital organ systems in sepsis.


Assuntos
Peritonite , Sepse , Ratos , Animais , Escherichia coli , Inflamação , Tronco Encefálico , Sepse/complicações , Fibrina , Isquemia
2.
Cannabis Cannabinoid Res ; 8(3): 510-526, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-35446129

RESUMO

Introduction: Our laboratory investigates changes in the respiratory pattern during systemic inflammation in various rodent models. The endogenous cannabinoid system (ECS) regulates cytokine production and mitigates inflammation. Inflammation not only affects cannabinoid (CB) 1 and CB2 receptor gene expression (Cnr1 and Cnr2), but also increases the predictability of the ventilatory pattern. Objectives: Our primary objective was to track ventilatory pattern variability and transcription of Cnr1 and Cnr2 mRNA, and of Il1b, Il6, and tumor necrosis factor-alpha (Tnfa) mRNAs at multiple time points in central and peripheral tissues during systemic inflammation induced by peritonitis. Methods: In male Sprague Dawley rats (n=24), we caused peritonitis by implanting a fibrin clot containing either 0 or 25×106 Escherichia coli intraperitoneally. We recorded breathing with whole-animal plethysmography at baseline and 1 h before euthanasia. We euthanized the rats at 3, 6, or 12 h after inoculation and harvested the pons, medulla, lung, and heart for gene expression analysis. Results: With peritonitis, Cnr1 mRNA more than Cnr2 mRNA was correlated to Il1b, Il6, and Tnfa mRNAs in medulla, pons, and lung and changed oppositely in the pons, medulla, and lung. These changes were associated with increased predictability of ventilatory pattern. Specifically, nonlinear complexity index correlated with increased Cnr1 mRNA in the pons and medulla, and coefficient of variation for cycle duration correlated with Cnr1 and Cnr2 mRNAs in the lung. Conclusion: The mRNAs for ECS receptors varied with time during the central and peripheral inflammatory response to peritonitis. These changes occurred in the brainstem, which contains the network that generates breathing pattern and thus, may participate in ventilatory pattern changes during systemic inflammation.


Assuntos
Canabinoides , Peritonite , Ratos , Masculino , Animais , Receptores de Canabinoides , Roedores/metabolismo , Interleucina-6 , Ratos Sprague-Dawley , Endocanabinoides/metabolismo , Peritonite/genética , Inflamação , RNA Mensageiro/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA