Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Curr Biol ; 29(6): 1055-1063.e2, 2019 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-30853434

RESUMO

In animals and fungi, cytokinesis is facilitated by the constriction of an actomyosin contractile ring (CR) [1]. In Schizosaccharomyces pombe, the CR forms mid-cell during mitosis from clusters of proteins at the medial cell cortex called nodes [2]. The anillin-like protein Mid1 localizes to nodes and is required for CR assembly at mid-cell [3]. When CR constriction begins, Mid1 leaves the division site. How Mid1 disassociates and whether this step is important for cytokinetic progression has been unknown. The septation initiation network (SIN), analogous to the Hippo pathway of multicellular organisms, is a signaling cascade that triggers node dispersal, CR assembly and constriction, and septum formation [4, 5]. We report that the terminal SIN kinase, Sid2 [6], phosphorylates Mid1 to drive its removal from the cortex at CR constriction onset. A Mid1 mutant that cannot be phosphorylated by Sid2 remains cortical during cytokinesis, over-accumulates in interphase nodes following cell division in a manner dependent on the SAD kinase Cdr2, advances the G2/M transition, precociously recruits other CR components to nodes, pulls Cdr2 aberrantly into the CR, and reduces rates of CR maturation and constriction. When combined with cdr2 mutants that affect node assembly or disassembly, gross defects in division site positioning result. Our findings identify Mid1 as a key Sid2 substrate for SIN-mediated remodeling of the division site for efficient cytokinesis and provide evidence that nodes serve to integrate signals coordinating cell cycle progression and cytokinesis.


Assuntos
Citocinese/genética , Mitose/genética , Proteínas Quinases/genética , Proteínas de Schizosaccharomyces pombe/genética , Schizosaccharomyces/fisiologia , Citoesqueleto de Actina/fisiologia , Pontos de Checagem do Ciclo Celular/fisiologia , Fosforilação , Proteínas Quinases/metabolismo , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Transdução de Sinais/fisiologia
2.
Curr Biol ; 21(6): 473-9, 2011 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-21376600

RESUMO

In eukaryotes, cytokinesis generally involves an actomyosin ring, the contraction of which promotes daughter cell segregation. Assembly of the contractile ring is tightly controlled in space and time. In the fission yeast, contractile ring components are first organized by the anillin-like protein Mid1 into medial cortical nodes. These nodes then coalesce laterally into a functional contractile ring. Although Mid1 is present at the medial cortex throughout G2, recruitment of contractile ring components to nodes starts only at mitotic onset, indicating that this event is cell-cycle regulated. Polo kinases are key temporal coordinators of mitosis and cytokinesis, and the Polo-like kinase Plo1 is known to activate Mid1 nuclear export at mitotic onset, coupling division plane specification to nuclear position. Here we provide evidence that Plo1 also triggers the recruitment of contractile ring components into medial cortical nodes. Plo1 binds at least two independent sites on Mid1, including a consensus site phosphorylated by Cdc2. Plo1 phosphorylates several residues within the first 100 amino acids of Mid1, which directly interact with the IQGAP Rng2, and influences the timing of myosin II recruitment. Plo1 thereby facilitates contractile ring assembly at mitotic onset.


Assuntos
Actomiosina/fisiologia , Proteínas Contráteis/metabolismo , Citocinese/fisiologia , Miosina Tipo II/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/fisiologia , Actomiosina/metabolismo , Sítios de Ligação/genética , Proteína Quinase CDC2/metabolismo , Imunoprecipitação , Espectrometria de Massas , Microscopia de Fluorescência , Fosforilação , Plasmídeos/genética , Proteínas de Schizosaccharomyces pombe/genética , Imagem com Lapso de Tempo
3.
Mol Biol Cell ; 20(16): 3646-59, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19570910

RESUMO

The chromosomal passenger complex (CPC) regulates various events in cell division. This complex is composed of a catalytic subunit, Aurora B kinase, and three nonenzymatic subunits, INCENP, Survivin, and Borealin. Together, these four subunits interdependently regulate CPC function, and they are highly conserved among eukaryotes. However, a Borealin homologue has never been characterized in the fission yeast, Schizosaccharomyces pombe. Here, we isolate a previously uncharacterized S. pombe protein through association with the Cdc14 phosphatase homologue, Clp1/Flp1, and identify it as a Borealin-like member of the CPC. Nbl1 (novel Borealin-like 1) physically associates with known CPC components, affects the kinase activity and stability of the S. pombe Aurora B homologue, Ark1, colocalizes with known CPC subunits during mitosis, and shows sequence similarity to human Borealin. Further analysis of the Clp1-Nbl1 interaction indicates that Clp1 requires CPC activity for proper accumulation at the contractile ring (CR). Consistent with this, we describe negative genetic interactions between mutant alleles of CPC and CR components. Thus, this study characterizes a fission yeast Borealin homologue and reveals a previously unrecognized connection between the CPC and the process of cytokinesis in S. pombe.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces , Sequência de Aminoácidos , Aurora Quinases , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Cromossomos Fúngicos , Citocinese/fisiologia , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Complexos Multiproteicos/metabolismo , Fosfoproteínas Fosfatases/genética , Proteínas Serina-Treonina Quinases/genética , Estrutura Secundária de Proteína , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Proteínas Tirosina Fosfatases/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Schizosaccharomyces/citologia , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/genética
4.
Curr Biol ; 18(20): 1594-9, 2008 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-18951025

RESUMO

Cdc14-family phosphatases play a conserved role in promoting mitotic exit and cytokinesis by dephosphorylating substrates of cyclin-dependent kinase (Cdk). Cdc14-family phosphatases have been best studied in yeast (for review, see [1, 2]), where budding yeast Cdc14 and its fission yeast homolog Clp1 are regulated partly by their localization; both proteins are thought to be sequestered in the nucleolus in interphase. Cdc14 and Clp1 are released from the nucleolus in mitosis, and in late mitosis conserved signaling pathways termed the mitotic exit network (MEN) and the septation initiation network (SIN) keeps Cdc14 and Clp1, respectively, out of the nucleolus through an unknown mechanism [3-6]. Here we show that the most downstream SIN component, the Ndr-family kinase Sid2, maintains Clp1 in the cytoplasm in late mitosis by phosphorylating Clp1 directly and thereby creating binding sites for the 14-3-3 protein Rad24. Mutation of the Sid2 phosphorylation sites on Clp1 disrupts the Clp1-Rad24 interaction and causes Clp1 to return prematurely to the nucleolus during cytokinesis. Loss of Clp1 from the cytoplasm in telophase renders cells sensitive to perturbation of the actomyosin ring but does not affect other Clp1 functions. Because all components of this pathway are conserved, this might be a broadly conserved mechanism for regulation of Cdc14-family phosphatases.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Mitose , Proteínas Quinases/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/genética , Proteínas 14-3-3/metabolismo , Sítios de Ligação , Proteínas de Ciclo Celular/genética , Nucléolo Celular/metabolismo , Citocinese , Citoplasma/metabolismo , Regulação Fúngica da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Mutação , Fosforilação , Proteínas Quinases/genética , Proteínas Tirosina Fosfatases/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética
5.
Biochem Soc Trans ; 36(Pt 3): 436-8, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18481975

RESUMO

The periodicity of CDKs (cyclin-dependent kinases) regulates most cell cycle transitions including cytokinesis. High Cdk1 activity promotes cytoskeletal rearrangements necessary for cell division while at the same time ensuring that cytokinesis does not begin before the separation of sister chromatids during anaphase. The conserved Cdc14 (cell division cycle 14)-family of phosphatases reverses Cdk phosphorylation events and therefore Cdc14 phosphatases promote the process of cytokinesis. Here, we review the elucidated roles of Cdc14 phosphatases in cytokinesis and the current outstanding questions regarding their function in this process.


Assuntos
Divisão Celular , Fosfoproteínas Fosfatases/metabolismo , Animais , Humanos , Transporte Proteico , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/enzimologia , Schizosaccharomyces/citologia , Schizosaccharomyces/enzimologia , Transdução de Sinais
6.
J Cell Biol ; 181(1): 79-88, 2008 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-18378776

RESUMO

Cdc14 phosphatases antagonize cyclin-dependent kinase-directed phosphorylation events and are involved in several facets of cell cycle control. We investigate the role of the fission yeast Cdc14 homologue Clp1/Flp1 in cytokinesis. We find that Clp1/Flp1 is tethered at the contractile ring (CR) through its association with anillin-related Mid1. Fluorescent recovery after photobleaching analyses indicate that Mid1, unlike other tested CR components, is anchored at the cell midzone, and this physical property is likely to account for its scaffolding role. By generating a mutation in mid1 that selectively disrupts Clp1/Flp1 tethering, we reveal the specific functional consequences of Clp1/Flp1 activity at the CR, including dephosphorylation of the essential CR component Cdc15, reductions in CR protein mobility, and CR resistance to mild perturbation. Our evidence indicates that Clp1/Flp1 must interact with the Mid1 scaffold to ensure the fidelity of Schizosaccharomyces pombe cytokinesis.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Citocinese , Proteínas Tirosina Fosfatases/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Miosinas/metabolismo , Fosforilação , Schizosaccharomyces/citologia
7.
Cell Cycle ; 4(12): 1826-33, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16294044

RESUMO

In budding yeast, the meiosis-specific protein kinase Ime2 is required for normal meiotic progression. Current evidence suggests that Ime2 is functionally related to Cdc28, the major cyclin-dependent kinase in yeast that is essential for both cell cycle and meiosis. We have previously reported that a natural target of Ime2 activity is replication protein A (RPA), the cellular single-stranded DNA-binding protein that performs critical functions during DNA replication, repair and recombination. Ime2-dependent RPA phosphorylation first occurs early in meiosis and targets the middle subunit of the RPA heterotrimeric complex (Rfa2). We now demonstrate that Rfa2 serine 27 (S27) is required for Ime2-dependent Rfa2 phosphorylation in vivo. S27 is also required for Rfa2 phosphorylation in vitro catalyzed by immunoprecipitated Ime2. In addition, Ime2 mediates in vitro phosphorylation of a short peptide containing Rfa2 amino acids 23 through 29, thereby providing evidence that S27 itself is the phosphoacceptor. Phosphorylation site mapping supports this conclusion, as mass spectrometry analysis has revealed that at least three residues within Rfa2 amino acids 2 through 35 become phosphorylated specifically during meiosis. Although S27 is embedded in a motif that is recognized by several protein kinases, this sequence is not a typical target of cyclin-dependent kinases. Therefore, the mechanism underlying Ime2 substrate recognition could differ from that of Cdc28.


Assuntos
Proteína Quinase CDC28 de Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas Quinases/metabolismo , Proteína de Replicação A/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Catálise , Proteínas de Ligação a DNA/química , Imunoprecipitação , Peptídeos e Proteínas de Sinalização Intracelular , Meiose , Mapeamento de Peptídeos , Fosfopeptídeos/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases , Proteína de Replicação A/química , Proteínas de Saccharomyces cerevisiae/química , Serina/genética , Fatores de Tempo , Fatores de Transcrição/química
8.
J Biol Chem ; 279(7): 6163-70, 2004 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-14634024

RESUMO

In Saccharomyces cerevisiae, the cellular single-stranded DNA-binding protein replication protein A (RPA) becomes phosphorylated during meiosis in two discrete reactions. The primary reaction is first observed shortly after cells enter the meiotic program and leads to phosphorylation of nearly all the detectable RPA. The secondary reaction, which requires the ATM/ATR homologue Mec1, is induced upon initiation of recombination and only modifies a fraction of the total RPA. We now report that correct timing of both RPA phosphorylation reactions requires Ime2, a meiosis-specific protein kinase that is critical for proper initiation of meiotic progression. Expression of Ime2 in vegetative cells leads to an unscheduled RPA phosphorylation reaction that does not require other tested meiosis-specific kinases and is distinct from the RPA phosphorylation reaction that normally occurs during mitotic growth. In addition, immunoprecipitated Ime2 catalyzes phosphorylation of purified RPA. Our data strongly suggest that Ime2 is an RPA kinase in vivo. We propose that Ime2 directly catalyzes RPA phosphorylation in the primary reaction and indirectly promotes the Mec1-dependent secondary reaction by advancing cells through meiotic progression. Our studies have identified a novel meiosis-specific reaction that targets a key protein required for DNA replication, repair, and recombination. This pathway could be important in differentiating mitotic and meiotic DNA metabolism.


Assuntos
Proteínas de Ciclo Celular/fisiologia , Proteínas de Ligação a DNA/fisiologia , Proteínas Quinases/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Western Blotting , Catálise , Proteínas de Ciclo Celular/metabolismo , DNA/química , Proteínas de Ligação a DNA/química , Peptídeos e Proteínas de Sinalização Intracelular , Meiose , Mitose , Mutação , Fosforilação , Plasmídeos/metabolismo , Testes de Precipitina , Ligação Proteica , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases , Recombinação Genética , Proteína de Replicação A , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA