Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(2)2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38256020

RESUMO

Genomic studies focusing on the contribution of common and rare genetic variants of schizophrenia and bipolar disorder support the view that substantial risk is conferred through molecular pathways involved in synaptic plasticity in the neurons of cortical and subcortical brain regions, including the hippocampus. Synaptic long-term potentiation (LTP) is central to associative learning and memory and depends on a pattern of gene expression in response to neuronal stimulation. Genes related to the induction of LTP have been associated with psychiatric genetic risk, but the specific cell types and timepoints responsible for the association are unknown. Using published genomic and transcriptomic datasets, we studied the relationship between temporally defined gene expression in hippocampal pyramidal neurons following LTP and enrichment for common genetic risk for schizophrenia and bipolar disorder, and for copy number variants (CNVs) and de novo coding variants associated with schizophrenia. We observed that upregulated genes in hippocampal pyramidal neurons at 60 and 120 min following LTP induction were enriched for common variant association with schizophrenia and bipolar disorder subtype I. At 60 min, LTP-induced genes were enriched in duplications from patients with schizophrenia, but this association was not specific to pyramidal neurons, perhaps reflecting the combined effects of CNVs in excitatory and inhibitory neuron subtypes. Gene expression following LTP was not related to enrichment for de novo coding variants from schizophrenia cases. Our findings refine our understanding of the role LTP-related gene sets play in conferring risk to conditions causing psychosis and provide a focus for future studies looking to dissect the molecular mechanisms associated with this risk.


Assuntos
Transtorno Bipolar , Transtornos Psicóticos , Humanos , Potenciação de Longa Duração/genética , Transtornos Psicóticos/genética , Transtorno Bipolar/genética , Hipocampo , Transcriptoma
2.
Biol Psychiatry ; 95(9): 888-895, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38103876

RESUMO

BACKGROUND: Genes that encode synaptic proteins or messenger RNA targets of the RNA-binding protein FMRP (fragile X messenger ribonucleoprotein) have been linked to schizophrenia and autism spectrum disorder (ASD) through the enrichment of genetic variants that confer risk for these disorders. FMRP binds many transcripts with synaptic functions and is thought to regulate their local translation, a process that enables rapid and compartmentalized protein synthesis required for development and plasticity. METHODS: We used summary statistics from large-scale genome-wide association studies of schizophrenia (74,776 cases, 101,023 controls) and ASD (18,381 cases, 27,969 controls) to test the hypothesis that the subset of synaptic genes that encode localized transcripts is more strongly associated with each disorder than nonlocalized transcripts. We also postulated that this subset of synaptic genes is responsible for associations attributed to FMRP targets. RESULTS: Schizophrenia associations were enriched in genes encoding localized synaptic transcripts compared to the remaining synaptic genes or to the remaining localized transcripts; this also applied to ASD associations, although only for transcripts observed after stimulation by fear conditioning. The genetic associations with either disorder captured by these gene sets were independent of those derived from FMRP targets. Schizophrenia association was related to FMRP interactions with messenger RNAs in somata, but not in dendrites, while ASD association was related to FMRP binding in either compartment. CONCLUSIONS: Our data suggest that synaptic transcripts capable of local translation are particularly relevant to the pathogenesis of schizophrenia and ASD, but they do not characterize the associations attributed to current sets of FMRP targets.


Assuntos
Transtorno do Espectro Autista , Esquizofrenia , Humanos , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/metabolismo , Estudo de Associação Genômica Ampla , Esquizofrenia/genética , Esquizofrenia/metabolismo , Proteína do X Frágil da Deficiência Intelectual/genética , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Neurônios/metabolismo
3.
Artigo em Inglês | MEDLINE | ID: mdl-36652379

RESUMO

Large numbers of genetic loci have been identified that are known to contain common risk alleles for schizophrenia, but linking associated alleles to specific risk genes remains challenging. Given that most alleles that influence liability to schizophrenia are thought to do so by altered gene expression, intuitively, case-control differential gene expression studies should highlight genes with a higher probability of being associated with schizophrenia and could help identify the most likely causal genes within associated loci. Here, we test this hypothesis by comparing transcriptome analysis of the dorsolateral prefrontal cortex from 563 schizophrenia cases and 802 controls with genome-wide association study (GWAS) data from the third wave study of the Psychiatric Genomics Consortium. Genes differentially expressed in schizophrenia were not enriched for common allelic association statistics compared with other brain-expressed genes, nor were they enriched for genes within associated loci previously reported to be prioritized by genetic fine-mapping. Genes prioritized by Summary-based Mendelian Randomization were underexpressed in cases compared to other genes in the same GWAS loci. However, the overall strength and direction of expression change predicted by SMR were not related to that observed in the differential expression data. Overall, this study does not support the hypothesis that genes identified as differentially expressed from RNA sequencing of bulk brain tissue are enriched for those that show evidence for genetic associations. Such data have limited utility for prioritizing genes in currently associated loci in schizophrenia.


Assuntos
Esquizofrenia , Humanos , Esquizofrenia/genética , Estudo de Associação Genômica Ampla , Predisposição Genética para Doença , Encéfalo , Expressão Gênica/genética , Polimorfismo de Nucleotídeo Único/genética
4.
Brain ; 146(4): 1523-1541, 2023 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-36204995

RESUMO

Myoclonus dystonia is a childhood-onset hyperkinetic movement disorder with a combined motor and psychiatric phenotype. It represents one of the few autosomal dominant inherited dystonic disorders and is caused by mutations in the ε-sarcoglycan (SGCE) gene. Work to date suggests that dystonia is caused by disruption of neuronal networks, principally basal ganglia-cerebello-thalamo-cortical circuits. Investigation of cortical involvement has primarily focused on disruption to interneuron inhibitory activity, rather than the excitatory activity of cortical pyramidal neurons. Here, we have sought to examine excitatory cortical glutamatergic activity using two approaches: the CRISPR/Cas9 editing of a human embryonic cell line, generating an SGCE compound heterozygous mutation, and three patient-derived induced pluripotent stem cell lines, each gene edited to generate matched wild-type SGCE control lines. Differentiation towards a cortical neuronal phenotype demonstrated no significant differences in either early- (PAX6, FOXG1) or late-stage (CTIP2, TBR1) neurodevelopmental markers. However, functional characterization using Ca2+ imaging and microelectrode array approaches identified an increase in network activity, while single-cell patch clamp studies found a greater propensity towards action potential generation with larger amplitudes and shorter half-widths associated with SGCE mutations. Bulk RNA sequencing analysis identified gene ontological enrichment for 'neuron projection development', 'synaptic signalling' and 'synaptic transmission'. Examination of dendritic morphology found SGCE mutations to be associated with a significantly higher number of branches and longer branch lengths, together with longer ion-channel dense axon initial segments, particularly towards the latter stages of differentiation (Days 80 and 100). Gene expression and protein quantification of key synaptic proteins (synaptophysin, synapsin and PSD95), AMPA and NMDA receptor subunits found no significant differences between the SGCE mutation and matched wild-type lines. By contrast, significant changes to synaptic adhesion molecule expression were identified, namely higher presynaptic neurexin-1 and lower postsynaptic neuroligin-4 levels in the SGCE mutation carrying lines. Our study demonstrates an increased intrinsic excitability of cortical glutamatergic neuronal cells in the context of SGCE mutations, coupled with a more complex neurite morphology and disruption to synaptic adhesion molecules. These changes potentially represent key components to the development of the hyperkinetic clinical phenotype observed in myoclonus dystonia, as well a central feature to the wider spectrum of dystonic disorders, potentially providing targets for future therapeutic development.


Assuntos
Distonia , Distúrbios Distônicos , Mioclonia , Humanos , Criança , Distonia/genética , Mioclonia/diagnóstico , Mutação/genética , Sarcoglicanas/genética
5.
Transl Psychiatry ; 12(1): 516, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36526621

RESUMO

Early-life adversity is associated with an increased risk of psychopathology, including mood disorders, later in life. Early-life stress affects several physiological systems, however, the exact mechanisms underlying pathological risk are not fully understood. This knowledge is crucial in developing appropriate therapeutic interventions. The prepubertal period is documented as a key developmental period for the maturation of the prefrontal cortex (PFC), a brain region involved in higher cognitive functions, including social function. In this study, we performed RNA sequencing on the PFC of adult rats who had experienced prepubertal stress (PPS) and controls to investigate the genome-wide consequences of this stress. PPS alters social behaviour in adulthood, therefore we also performed RNA sequencing on PPS and control rats following a social interaction test to determine social activity-dependent gene changes. At a baseline state (1 week following a social interaction test), no genes were differentially expressed in the PPS group. However, 1603 genes were differentially expressed in PPS rats compared to controls following a social interaction. These genes were enriched in biological pathways associated with cell signalling and axon myelination dynamics. Cell enrichment analysis showed these genes were associated with oligodendrocytes, and a comparison with an existing early-life stress sequencing dataset showed that pathways linked to oligodendrocyte morphology are impacted in a range of models of early-life stress in rodents. In conclusion, we identify pathways, including those involved in axon myelination, that are differentially activated in the adult in response to social stimulation following PPS. These differential responses may contribute to vulnerability to psychiatric pathology.


Assuntos
Interação Social , Estresse Psicológico , Animais , Ratos , Estresse Psicológico/metabolismo , Oligodendroglia/metabolismo , Córtex Pré-Frontal , Expressão Gênica
6.
Hum Mol Genet ; 31(18): 3095-3106, 2022 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-35531971

RESUMO

Large-scale genomic studies of schizophrenia implicate genes involved in the epigenetic regulation of transcription by histone methylation and genes encoding components of the synapse. However, the interactions between these pathways in conferring risk to psychiatric illness are unknown. Loss-of-function (LoF) mutations in the gene encoding histone methyltransferase, SETD1A, confer substantial risk to schizophrenia. Among several roles, SETD1A is thought to be involved in the development and function of neuronal circuits. Here, we employed a multi-omics approach to study the effects of heterozygous Setd1a LoF on gene expression and synaptic composition in mouse cortex across five developmental timepoints from embryonic day 14 to postnatal day 70. Using RNA sequencing, we observed that Setd1a LoF resulted in the consistent downregulation of genes enriched for mitochondrial pathways. This effect extended to the synaptosome, in which we found age-specific disruption to both mitochondrial and synaptic proteins. Using large-scale patient genomics data, we observed no enrichment for genetic association with schizophrenia within differentially expressed transcripts or proteins, suggesting they derive from a distinct mechanism of risk from that implicated by genomic studies. This study highlights biological pathways through which SETD1A LOF may confer risk to schizophrenia. Further work is required to determine whether the effects observed in this model reflect human pathology.


Assuntos
Histona-Lisina N-Metiltransferase , Histonas , Animais , Epigênese Genética , Histona Metiltransferases/genética , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Humanos , Camundongos , Sinaptossomos/metabolismo , Transcriptoma/genética
7.
Biol Psychiatry ; 90(6): 399-408, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-33965196

RESUMO

BACKGROUND: Recent breakthroughs in psychiatric genetics have implicated biological pathways onto which genetic risk for psychiatric disorders converges. However, these studies do not reveal the developmental time point(s) at which these pathways are relevant. METHODS: We aimed to determine the relationship between psychiatric risk and developmental gene expression relating to discrete biological pathways. We used postmortem RNA sequencing data (BrainSeq and BrainSpan) from brain tissue at multiple prenatal and postnatal time points, with summary statistics from recent genome-wide association studies of schizophrenia, bipolar disorder, and major depressive disorder. We prioritized gene sets for overall enrichment of association with each disorder and then tested the relationship between the association of their constituent genes with their relative expression at each developmental stage. RESULTS: We observed relationships between the expression of genes involved in voltage-gated cation channel activity during early midfetal, adolescence, and early adulthood time points and association with schizophrenia and bipolar disorder, such that genes more strongly associated with these disorders had relatively low expression during early midfetal development and higher expression during adolescence and early adulthood. The relationship with schizophrenia was strongest for the subset of genes related to calcium channel activity, while for bipolar disorder, the relationship was distributed between calcium and potassium channel activity genes. CONCLUSIONS: Our results indicate periods during development when biological pathways related to the activity of calcium and potassium channels may be most vulnerable to the effects of genetic variants conferring risk for psychiatric disorders. Furthermore, they indicate key time points and potential targets for disorder-specific therapeutic interventions.


Assuntos
Transtorno Bipolar , Transtorno Depressivo Maior , Esquizofrenia , Adulto , Transtorno Bipolar/genética , Cátions , Transtorno Depressivo Maior/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Esquizofrenia/genética
8.
Mol Psychiatry ; 26(7): 2977-2990, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33077856

RESUMO

Genes encoding the mRNA targets of fragile X mental retardation protein (FMRP) are enriched for genetic association with psychiatric disorders. However, many FMRP targets possess functions that are themselves genetically associated with psychiatric disorders, including synaptic transmission and plasticity, making it unclear whether the genetic risk is truly related to binding by FMRP or is alternatively mediated by the sampling of genes better characterised by another trait or functional annotation. Using published common variant, rare coding variant and copy number variant data, we examined the relationship between FMRP binding and genetic association with schizophrenia, major depressive disorder and bipolar disorder. High-confidence targets of FMRP, derived from studies of multiple tissue types, were enriched for common schizophrenia risk alleles, as well as rare loss-of-function and de novo nonsynonymous variants in schizophrenia cases. Similarly, through common variation, FMRP targets were associated with major depressive disorder, and we present novel evidence of association with bipolar disorder. These relationships could not be explained by other functional annotations known to be associated with psychiatric disorders, including those related to synaptic structure and function. This study reinforces the evidence that targeting by FMRP captures a subpopulation of genes enriched for genetic association with a range of psychiatric disorders.


Assuntos
Transtorno Bipolar , Transtorno Depressivo Maior , Proteína do X Frágil da Deficiência Intelectual , Transtornos Mentais , Esquizofrenia , Transtorno Bipolar/genética , Transtorno Depressivo Maior/genética , Proteína do X Frágil da Deficiência Intelectual/genética , Humanos , Transtornos Mentais/genética , Esquizofrenia/genética
9.
Mol Psychiatry ; 26(6): 2025-2037, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-32398717

RESUMO

The mitochondrial protein, translocator protein (TSPO), is a widely used biomarker of neuroinflammation, but its non-selective cellular expression pattern implies roles beyond inflammatory processes. In the present study, we investigated whether neuronal activity modifies TSPO levels in the adult central nervous system. First, we used single-cell RNA sequencing to generate a cellular landscape of basal TSPO gene expression in the hippocampus of adult (12 weeks old) C57BL6/N mice, followed by confocal laser scanning microscopy to verify TSPO protein in neuronal and non-neuronal cell populations. We then quantified TSPO mRNA and protein levels after stimulating neuronal activity with distinct stimuli, including designer receptors exclusively activated by designer drugs (DREADDs), exposure to a novel environment and acute treatment with the psychostimulant drug, amphetamine. Single-cell RNA sequencing demonstrated a non-selective and multi-cellular gene expression pattern of TSPO at basal conditions in the adult mouse hippocampus. Confocal laser scanning microscopy confirmed that TSPO protein is present in neuronal and non-neuronal (astrocytes, microglia, vascular endothelial cells) cells of cortical (medial prefrontal cortex) and subcortical (hippocampus) brain regions. Stimulating neuronal activity through chemogenetic (DREADDs), physiological (novel environment exposure) or psychopharmacological (amphetamine treatment) approaches led to consistent increases in TSPO gene and protein levels in neurons, but not in microglia or astrocytes. Taken together, our findings show that neuronal activity has the potential to modify TSPO levels in the adult central nervous system. These findings challenge the general assumption that altered TSPO expression or binding unequivocally mirrors ongoing neuroinflammation and emphasize the need to consider non-inflammatory interpretations in some physiological or pathological contexts.


Assuntos
Células Endoteliais , Receptores de GABA , Animais , Camundongos , Microglia , Neurônios , Tomografia por Emissão de Pósitrons , Receptores de GABA/genética
10.
Complex Psychiatry ; 6(1-2): 5-19, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34883502

RESUMO

There is increasing awareness of the role genetic risk variants have in mediating vulnerability to psychiatric disorders such as schizophrenia and autism. Many of these risk variants encode synaptic proteins, influencing biological pathways of the postsynaptic density and, ultimately, synaptic plasticity. Fragile-X mental retardation 1 (FMR1) and cytoplasmic fragile-X mental retardation protein (FMRP)-interacting protein 1 (CYFIP1) contain 2 such examples of highly penetrant risk variants and encode synaptic proteins with shared functional significance. In this review, we discuss the biological actions of FMRP and CYFIP1, including their regulation of (i) protein synthesis and specifically FMRP targets, (ii) dendritic and spine morphology, and (iii) forms of synaptic plasticity such as long-term depression. We draw upon a range of preclinical studies that have used genetic dosage models of FMR1 and CYFIP1 to determine their biological function. In parallel, we discuss how clinical studies of fragile X syndrome or 15q11.2 deletion patients have informed our understanding of FMRP and CYFIP1, and highlight the latest psychiatric genomic findings that continue to implicate FMRP and CYFIP1. Lastly, we assess the current limitations in our understanding of FMRP and CYFIP1 biology and how they must be addressed before mechanism-led therapeutic strategies can be developed for psychiatric disorders.

11.
Mol Neuropsychiatry ; 5(3): 147-161, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31312636

RESUMO

Alterations in synaptic signaling and plasticity occur during the refinement of neural circuits over the course of development and the adult processes of learning and memory. Synaptic plasticity requires the rearrangement of protein complexes in the postsynaptic density (PSD), trafficking of receptors and ion channels and the synthesis of new proteins. Activity-induced short Homer proteins, Homer1a and Ania-3, are recruited to active excitatory synapses, where they act as dominant negative regulators of constitutively expressed, longer Homer isoforms. The expression of Homer1a and Ania-3 initiates critical processes of PSD remodeling, the modulation of glutamate receptor-mediated functions, and the regulation of calcium signaling. Together, available data support the view that Homer1a and Ania-3 are responsible for the selective, transient destabilization of postsynaptic signaling complexes to facilitate plasticity of the excitatory synapse. The interruption of activity-dependent Homer proteins disrupts disease-relevant processes and leads to memory impairments, reflecting their likely contribution to neurological disorders.

12.
Proc Natl Acad Sci U S A ; 116(19): 9604-9609, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-31004051

RESUMO

Schizophrenia has been conceived as a disorder of brain connectivity, but it is unclear how this network phenotype is related to the underlying genetics. We used morphometric similarity analysis of MRI data as a marker of interareal cortical connectivity in three prior case-control studies of psychosis: in total, n = 185 cases and n = 227 controls. Psychosis was associated with globally reduced morphometric similarity in all three studies. There was also a replicable pattern of case-control differences in regional morphometric similarity, which was significantly reduced in patients in frontal and temporal cortical areas but increased in parietal cortex. Using prior brain-wide gene expression data, we found that the cortical map of case-control differences in morphometric similarity was spatially correlated with cortical expression of a weighted combination of genes enriched for neurobiologically relevant ontology terms and pathways. In addition, genes that were normally overexpressed in cortical areas with reduced morphometric similarity were significantly up-regulated in three prior post mortem studies of schizophrenia. We propose that this combined analysis of neuroimaging and transcriptional data provides insight into how previously implicated genes and proteins as well as a number of unreported genes in their topological vicinity on the protein interaction network may drive structural brain network changes mediating the genetic risk of schizophrenia.


Assuntos
Encéfalo , Regulação da Expressão Gênica , Rede Nervosa , Vias Neurais , Neuroimagem , Transtornos Psicóticos , Esquizofrenia , Adulto , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Encéfalo/patologia , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/metabolismo , Rede Nervosa/patologia , Vias Neurais/metabolismo , Vias Neurais/patologia , Transtornos Psicóticos/diagnóstico por imagem , Transtornos Psicóticos/metabolismo , Transtornos Psicóticos/patologia , Esquizofrenia/diagnóstico por imagem , Esquizofrenia/metabolismo
13.
Transl Psychiatry ; 9(1): 74, 2019 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-30718481

RESUMO

Common genetic variation contributes a substantial proportion of risk for both schizophrenia and bipolar disorder. Furthermore, there is evidence of significant, but not complete, overlap in genetic risk between the two disorders. It has been hypothesised that genetic variants conferring risk for these disorders do so by influencing brain development, leading to the later emergence of symptoms. The comparative profile of risk gene expression for schizophrenia and bipolar disorder across development over different brain regions however remains unclear. Using genotypes derived from genome-wide associations studies of the largest available cohorts of patients and control subjects, we investigated whether genes enriched for schizophrenia and bipolar disorder association show a bias for expression across any of 13 developmental stages in prefrontal cortical and subcortical brain regions. We show that genetic association with schizophrenia is positively correlated with expression in the prefrontal cortex during early midfetal development and early infancy, and negatively correlated with expression during late childhood, which stabilises in adolescence. In contrast, risk-associated genes for bipolar disorder did not exhibit a bias towards expression at any prenatal stage, although the pattern of postnatal expression was similar to that of schizophrenia. These results highlight the dynamic expression of genes harbouring risk for schizophrenia and bipolar disorder across prefrontal cortex development and support the hypothesis that prenatal neurodevelopmental events are more strongly associated with schizophrenia than bipolar disorder.


Assuntos
Desenvolvimento do Adolescente/fisiologia , Transtorno Bipolar/genética , Transtorno Bipolar/metabolismo , Desenvolvimento Infantil/fisiologia , Desenvolvimento Fetal/fisiologia , Perfilação da Expressão Gênica , Expressão Gênica/genética , Predisposição Genética para Doença , Córtex Pré-Frontal/crescimento & desenvolvimento , Córtex Pré-Frontal/metabolismo , Esquizofrenia/genética , Adolescente , Adulto , Criança , Pré-Escolar , Estudo de Associação Genômica Ampla , Humanos , Lactente , Adulto Jovem
14.
J Psychopharmacol ; 32(2): 156-162, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29338491

RESUMO

Ketamine, principally an antagonist of N-methyl-ᴅ-aspartate receptors, induces schizophrenia-like symptoms in adult humans, warranting its use in the investigation of psychosis-related phenotypes in animal models. Genomic studies further implicate N-methyl-ᴅ-aspartate receptor-mediated processes in schizophrenia pathology, together with more broadly-defined synaptic plasticity and associative learning processes. Strong pathophysiological links have been demonstrated between fear learning and psychiatric disorders such as schizophrenia. To further investigate the impact of ketamine on associative fear learning, we studied the effects of pre- and post-training ketamine on the consolidation and extinction of contextual fear memory in rats. Administration of 25 mg/kg ketamine prior to fear conditioning did not affect consolidation when potentially confounding effects of state dependency were controlled for. Pre-training ketamine (25 mg/kg) impaired the extinction of the conditioned fear response, which was mirrored with the use of a lower dose (8 mg/kg). Post-training ketamine (25 mg/kg) had no effect on the consolidation or extinction of conditioned fear. These observations implicate processes relating to the extinction of contextual fear memory in the manifestation of ketamine-induced phenotypes, and are consistent with existing hypotheses surrounding abnormal associative learning in schizophrenia.


Assuntos
Antagonistas de Aminoácidos Excitatórios/farmacologia , Medo/efeitos dos fármacos , Ketamina/farmacologia , Memória/efeitos dos fármacos , Animais , Condicionamento Psicológico/efeitos dos fármacos , Relação Dose-Resposta a Droga , Antagonistas de Aminoácidos Excitatórios/administração & dosagem , Extinção Psicológica/efeitos dos fármacos , Ketamina/administração & dosagem , Masculino , Fenótipo , Ratos
15.
Mol Neuropsychiatry ; 4(3): 149-157, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30643788

RESUMO

CACNA1C encodes the Cav1.2 L-type voltage-gated calcium channel. Generic variation in CACNA1C has been consistently identified as associated with risk for psychiatric disorders including schizophrenia, bipolar disorder, major depressive disorder and autism. Psychiatric risk loci are also enriched for genes involved in the regulation of synaptic plasticity. Here, we show that the expression of Cacna1c is regulated in the rat hippocampus after context exposure, contextual fear conditioning and fear memory retrieval in a manner that correlates to specific memory processes. Using quantitative in situ hybridisation, the expression was down-regulated in CA1 by brief exposure to a novel context and to a conditioned context, and up-regulated in the dentate gyrus after contextual fear conditioning. No changes were measured after prolonged context exposure followed by conditioning, a procedure that retards fear conditioning (latent inhibition), nor with fear memory recall leading to extinction. These results are consistent with a selective role for Cav1.2 in the consolidation of context memory and contextual fear memory, and with processes associated with the maintenance of the fear memory after recall. The dysregulation of CACNA1C may thus be related to associative memory dysfunction in schizophrenia and other psychiatric disorders.

16.
Neural Plast ; 2017: 5959182, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29238619

RESUMO

Genes involved in synaptic plasticity, particularly genes encoding postsynaptic density proteins, have been recurrently linked to psychiatric disorders including schizophrenia and autism. Postsynaptic density Homer1 proteins contribute to synaptic plasticity through the competing actions of short and long isoforms. The activity-induced expression of short Homer1 isoforms, Homer1a and Ania-3, is thought to be related to processes of learning and memory. However, the precise regulation of Homer1a and Ania-3 with different components of learning has not been investigated. Here, we used in situ hybridization to quantify short and long Homer1 expression in the hippocampus following consolidation, retrieval, and extinction of associative fear memory, using contextual fear conditioning in rats. Homer1a and Ania-3, but not long Homer1, were regulated by contextual fear learning or novelty detection, although their precise patterns of expression in hippocampal subregions were dependent on the isoform. We also show for the first time that the two short Homer1 isoforms are regulated after the retrieval and extinction of contextual fear memory, albeit with distinct temporal and spatial profiles. These findings support a role of activity-induced Homer1 isoforms in learning and memory processes in discrete hippocampal subregions and suggest that Homer1a and Ania-3 may play separable roles in synaptic plasticity.


Assuntos
Aprendizagem por Associação/fisiologia , Condicionamento Clássico/fisiologia , Hipocampo/metabolismo , Proteínas de Arcabouço Homer/metabolismo , Neurônios/metabolismo , Animais , Comportamento Animal/fisiologia , Medo/fisiologia , Masculino , Ratos
17.
Psychopharmacology (Berl) ; 225(3): 579-94, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22983144

RESUMO

Metabotropic glutamate-5 receptors (mGluR5), which physically and functionally interact with N-methyl-D-Aspartate (NMDA) receptors, likewise control cognitive processes and have been proposed as targets for novel classes of antipsychotic agent. Since social cognition is impaired in schizophrenia and disrupted by NMDA receptor antagonists like dizocilpine, we evaluated its potential modulation by mGluR5. Acute administration (0.63-40 mg/kg) of the mGluR5 positive allosteric modulators (PAMs), 3-cyano-N-(1,3-diphenyl-1H-pyrazol-5-yl)benzamide (CDPPB) and ADX47273, reversed a delay-induced impairment in social novelty discrimination (SND) in adult rats. The action of CDPPB was blocked by the mGluR5 antagonist, 2-methyl-6-(phenylethynyl)-pyridine (2.5-10 mg/kg), and was also expressed upon microinjection into frontal cortex (0.63-10 µg/side), but not striatum. Supporting an interrelationship between mGluR5 and NMDA receptors, enhancement of SND by CDPPB was blocked by dizocilpine (0.08 mg/kg) while, reciprocally, dizocilpine-induced impairment in SND was attenuated by CDPPB (10 mg/kg). The SND deficit elicited by post-natal administration of phencyclidine (10 mg/kg, days 7-11) was reversed by CDPPB or ADX47273 in adults at week 8. This phencyclidine-induced impairment in cognition emerged in adult rats from week 7 on, and chronic, pre-symptomatic treatment of adolescent rats with CDPPB over weeks 5-6 (10 mg/kg per day) prevented the appearance of SND deficits in adults until at least week 13. In conclusion, as evaluated by a SND procedure, mGluR5 PAMs promote social cognition via actions expressed in interaction with NMDA receptors and exerted in frontal cortex. MGluR5 PAMs not only reverse but also (when given during adolescence) prevent the emergence of cognitive impairment associated with a developmental model of schizophrenia.


Assuntos
Envelhecimento/psicologia , Comportamento Animal/efeitos dos fármacos , Discriminação Psicológica/efeitos dos fármacos , Fenciclidina/farmacologia , Receptores de Glutamato Metabotrópico/metabolismo , Comportamento Social , Envelhecimento/efeitos dos fármacos , Envelhecimento/metabolismo , Regulação Alostérica , Animais , Animais Recém-Nascidos , Benzamidas/farmacologia , Encéfalo/efeitos dos fármacos , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Maleato de Dizocilpina/farmacologia , Relação Dose-Resposta a Droga , Masculino , Microinjeções , Oxidiazóis/farmacologia , Piperidinas/farmacologia , Pirazóis/farmacologia , Ratos , Ratos Wistar , Receptor de Glutamato Metabotrópico 5 , Receptores de Glutamato Metabotrópico/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/metabolismo , Esquizofrenia/induzido quimicamente , Esquizofrenia/metabolismo , Esquizofrenia/prevenção & controle
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...