Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; 15(40): e1902817, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31433561

RESUMO

A deep comprehension of the local anodic oxidation process in 2D materials is achieved thanks to an extensive experimental and theoretical study of this phenomenon in graphene. This requires to arrange a novel instrumental device capable to generate separated regions of monolayer graphene oxide (GO) over graphene, with any desired size, from micrometers to unprecedented mm2 , in minutes, a milestone in GO monolayer production. GO regions are manufactured by overlapping lots of individual oxide spots of thousands µm2 area. The high reproducibility and circular size of the spots allows not only an exhaustive experimental characterization inside, but also establishing an original model for oxide expansion which, from classical first principles, overcomes the traditional paradigm of the water bridge, and is applicable to any 2D-material. This tool predicts the oxidation behavior with voltage and exposure time, as well as the expected electrical current along the process. The hitherto unreported transient current is measured during oxidation, gaining insight on its components, electrochemical and transport. Just combining electrical measurements and optical imaging estimating carrier mobility and degree of oxidation is possible. X-ray photoelectron spectroscopy reveals a graphene oxidation about 30%, somewhat lower to that obtained by Hummers' method.

2.
Inorg Chem ; 55(8): 3980-91, 2016 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-27035091

RESUMO

The influence of particle size in both the structure and thermochromic behavior of 4H-SrMnO3 related perovskite is described. Microsized SrMnO3 suffers a structural transition from hexagonal (P63/mmc) to orthorhombic (C2221) symmetry at temperature close to 340 K. The orthorhombic distortion is due to the tilting of the corner-sharing Mn2O9 units building the 4H structural type. When temperature decreases, the distortion becomes sharper reaching its maximal degree at ∼125 K. These structural changes promote the modification of the electronic structure of orthorhombic SrMnO3 phase originating the observed color change. nano-SrMnO3 adopts the ideal 4H hexagonal structure at room temperature, the orthorhombic distortion being only detected at temperature below 170 K. A decrease in the orthorhombic distortion degree, compared to that observed in the microsample, may be the reason why a color change is not observed at low temperature (77 K).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA