Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 1722, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38409240

RESUMO

Crimean-Congo hemorrhagic fever virus (CCHFV) is a WHO priority pathogen. Antibody-based medical countermeasures offer an important strategy to mitigate severe disease caused by CCHFV. Most efforts have focused on targeting the viral glycoproteins. However, glycoproteins are poorly conserved among viral strains. The CCHFV nucleocapsid protein (NP) is highly conserved between CCHFV strains. Here, we investigate the protective efficacy of a CCHFV monoclonal antibody targeting the NP. We find that an anti-NP monoclonal antibody (mAb-9D5) protected female mice against lethal CCHFV infection or resulted in a significant delay in mean time-to-death in mice that succumbed to disease compared to isotype control animals. Antibody protection is independent of Fc-receptor functionality and complement activity. The antibody bound NP from several CCHFV strains and exhibited robust cross-protection against the heterologous CCHFV strain Afg09-2990. Our work demonstrates that the NP is a viable target for antibody-based therapeutics, providing another direction for developing immunotherapeutics against CCHFV.


Assuntos
Vírus da Febre Hemorrágica da Crimeia-Congo , Febre Hemorrágica da Crimeia , Feminino , Animais , Camundongos , Vírus da Febre Hemorrágica da Crimeia-Congo/metabolismo , Proteínas do Nucleocapsídeo/metabolismo , Anticorpos Monoclonais , Febre Hemorrágica da Crimeia/prevenção & controle , Glicoproteínas/metabolismo , Anticorpos Antivirais
2.
Hum Vaccin Immunother ; 19(3): 2277083, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37975637

RESUMO

Francisella tularensis is one of the several biothreat agents for which a licensed vaccine is needed. To ensure vaccine protection is achieved across a range of virulent F. tularensis strains, we assembled and characterized a panel of F. tularensis isolates to be utilized as challenge strains. A promising tularemia vaccine candidate is rLVS ΔcapB/iglABC (rLVS), in which the vector is the LVS strain with a deletion in the capB gene and which additionally expresses a fusion protein comprising immunodominant epitopes of proteins IglA, IglB, and IglC. Fischer rats were immunized subcutaneously 1-3 times at 3-week intervals with rLVS at various doses. The rats were exposed to a high dose of aerosolized Type A strain Schu S4 (FRAN244), a Type B strain (FRAN255), or a tick derived Type A strain (FRAN254) and monitored for survival. All rLVS vaccination regimens including a single dose of 107 CFU rLVS provided 100% protection against both Type A strains. Against the Type B strain, two doses of 107 CFU rLVS provided 100% protection, and a single dose of 107 CFU provided 87.5% protection. In contrast, all unvaccinated rats succumbed to aerosol challenge with all of the F. tularensis strains. A robust Th1-biased antibody response was induced in all vaccinated rats against all F. tularensis strains. These results demonstrate that rLVS ΔcapB/iglABC provides potent protection against inhalational challenge with either Type A or Type B F. tularensis strains and should be considered for further analysis as a future tularemia vaccine.


Assuntos
Francisella tularensis , Tularemia , Ratos , Animais , Camundongos , Francisella tularensis/genética , Tularemia/prevenção & controle , Ratos Endogâmicos F344 , Vacinas Bacterianas , Vacinas Atenuadas , Camundongos Endogâmicos BALB C , Modelos Animais de Doenças
3.
PLoS Pathog ; 18(5): e1010485, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35587473

RESUMO

Crimean-Congo hemorrhagic fever virus (CCHFV) is an important human pathogen. In cell culture, CCHFV is sensed by the cytoplasmic RNA sensor retinoic acid-inducible gene I (RIG-I) molecule and its adaptor molecule mitochondrial antiviral signaling (MAVS) protein. MAVS initiates both type I interferon (IFN-I) and proinflammatory responses. Here, we studied the role MAVS plays in CCHFV infection in mice in both the presence and absence of IFN-I activity. MAVS-deficient mice were not susceptible to CCHFV infection when IFN-I signaling was active and showed no signs of disease. When IFN-I signaling was blocked by antibody, MAVS-deficient mice lost significant weight, but were uniformly protected from lethal disease, whereas all control mice succumbed to infection. Cytokine activity in the infected MAVS-deficient mice was markedly blunted. Subsequent investigation revealed that CCHFV infected mice lacking TNF-α receptor signaling (TNFA-R-deficient), but not IL-6 or IL-1 activity, had more limited liver injury and were largely protected from lethal outcomes. Treatment of mice with an anti-TNF-α neutralizing antibody also conferred partial protection in a post-virus exposure setting. Additionally, we found that a disease causing, but non-lethal strain of CCHFV produced more blunted inflammatory cytokine responses compared to a lethal strain in mice. Our work reveals that MAVS activation and cytokine production both contribute to CCHFV pathogenesis, potentially identifying new therapeutic targets to treat this disease.


Assuntos
Vírus da Febre Hemorrágica da Crimeia-Congo , Febre Hemorrágica da Crimeia , Animais , Citocinas , Modelos Animais de Doenças , Vírus da Febre Hemorrágica da Crimeia-Congo/genética , Camundongos , Camundongos Knockout , Índice de Gravidade de Doença , Inibidores do Fator de Necrose Tumoral
4.
mBio ; 13(1): e0290621, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35073750

RESUMO

The rapid emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has created a global health emergency. While most human disease is mild to moderate, some infections lead to a severe disease characterized by acute respiratory distress, hypoxia, anosmia, ageusia, and, in some instances, neurological involvement. Small-animal models reproducing severe disease, including neurological sequela, are needed to characterize the pathophysiological mechanism(s) of disease and to identify medical countermeasures. Transgenic mice expressing the human angiotensin-converting enzyme 2 (hACE2) viral receptor under the control of the K18 promoter develop severe and lethal respiratory disease subsequent to SARS-CoV-2 intranasal challenge when high viral doses are used. Here, we report on SARS-CoV-2 infection of hamsters engineered to express the hACE2 receptor under the control of the K18 promoter. K18-hACE2 hamsters infected with a relatively low dose of 100 or 1,000 PFU of SARS-CoV-2 developed a severe and lethal disease, with most animals succumbing by day 5 postinfection. Hamsters developed severe lesions and inflammation within the upper and lower respiratory system, including infection of the nasal cavities causing marked destruction of the olfactory epithelium as well as severe bronchopneumonia that extended deep into the alveoli. Additionally, SARS-CoV-2 infection spread to the central nervous system (CNS), including the brain stem and spinal cord. Wild-type (WT) hamsters naturally support SARS-CoV-2 infection, with the primary lesions present in the respiratory tract and nasal cavity. Overall, infection in the K18-hACE2 hamsters is more extensive than that in WT hamsters, with more CNS involvement and a lethal outcome. These findings demonstrate the K18-hACE2 hamster model will be valuable for studying SARS-CoV-2. IMPORTANCE The rapid emergence of SARS-CoV-2 has created a global health emergency. While most human SARS-CoV-2 disease is mild, some people develop severe, life-threatening disease. Small-animal models mimicking the severe aspects of human disease are needed to more clearly understand the pathophysiological processes driving this progression. Here, we studied SARS-CoV-2 infection in hamsters engineered to express the human angiotensin-converting enzyme 2 viral receptor under the control of the K18 promoter. SARS-CoV-2 produces a severe and lethal infection in transgenic hamsters that mirrors the most severe aspects of COVID-19 in humans, including respiratory and neurological injury. In contrast to other animal systems, hamsters manifest disease with levels of input virus more consistent with natural human infection. This system will be useful for the study of SARS-CoV-2 disease and the development of drugs targeting this virus.


Assuntos
COVID-19 , SARS-CoV-2 , Camundongos , Animais , Cricetinae , Humanos , COVID-19/patologia , Enzima de Conversão de Angiotensina 2 , Peptidil Dipeptidase A , Pulmão/patologia , Camundongos Transgênicos , Modelos Animais de Doenças
5.
J Gen Virol ; 102(5)2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33961540

RESUMO

SARS-CoV-2 is the causative agent of COVID-19 and human infections have resulted in a global health emergency. Small animal models that reproduce key elements of SARS-CoV-2 human infections are needed to rigorously screen candidate drugs to mitigate severe disease and prevent the spread of SARS-CoV-2. We and others have reported that transgenic mice expressing the human angiotensin-converting enzyme 2 (hACE2) viral receptor under the control of the Keratin 18 (K18) promoter develop severe and lethal respiratory disease subsequent to SARS-CoV-2 intranasal challenge. Here we report that some infected mice that survive challenge have residual pulmonary damages and persistent brain infection on day 28 post-infection despite the presence of anti-SARS-COV-2 neutralizing antibodies. Because of the hypersensitivity of K18-hACE2 mice to SARS-CoV-2 and the propensity of virus to infect the brain, we sought to determine if anti-infective biologics could protect against disease in this model system. We demonstrate that anti-SARS-CoV-2 human convalescent plasma protects K18-hACE2 against severe disease. All control mice succumbed to disease by day 7; however, all treated mice survived infection without observable signs of disease. In marked contrast to control mice, viral antigen and lesions were reduced or absent from lungs and absent in brains of antibody-treated mice. Our findings support the use of K18-hACE2 mice for protective efficacy studies of anti-SARS-CoV-2 medical countermeasures (MCMs). They also support the use of this system to study SARS-CoV-2 persistence and host recovery.


Assuntos
COVID-19/terapia , Lesão Pulmonar Aguda/prevenção & controle , Lesão Pulmonar Aguda/virologia , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Encéfalo/patologia , Encéfalo/virologia , COVID-19/imunologia , COVID-19/patologia , COVID-19/virologia , Modelos Animais de Doenças , Feminino , Humanos , Imunização Passiva , Pulmão/patologia , Pulmão/virologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Receptores de Coronavírus/genética , Receptores de Coronavírus/metabolismo , SARS-CoV-2/imunologia , SARS-CoV-2/isolamento & purificação , SARS-CoV-2/fisiologia , Índice de Gravidade de Doença , Carga Viral , Replicação Viral , Soroterapia para COVID-19
6.
JCI Insight ; 5(19)2020 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-32841215

RESUMO

The emergence of SARS-CoV-2 has created an international health crisis, and small animal models mirroring SARS-CoV-2 human disease are essential for medical countermeasure (MCM) development. Mice are refractory to SARS-CoV-2 infection owing to low-affinity binding to the murine angiotensin-converting enzyme 2 (ACE2) protein. Here, we evaluated the pathogenesis of SARS-CoV-2 in male and female mice expressing the human ACE2 gene under the control of the keratin 18 promoter (K18). In contrast to nontransgenic mice, intranasal exposure of K18-hACE2 animals to 2 different doses of SARS-CoV-2 resulted in acute disease, including weight loss, lung injury, brain infection, and lethality. Vasculitis was the most prominent finding in the lungs of infected mice. Transcriptomic analysis from lungs of infected animals showed increases in transcripts involved in lung injury and inflammatory cytokines. In the low-dose challenge groups, there was a survival advantage in the female mice, with 60% surviving infection, whereas all male mice succumbed to disease. Male mice that succumbed to disease had higher levels of inflammatory transcripts compared with female mice. To our knowledge, this is the first highly lethal murine infection model for SARS-CoV-2 and should be valuable for the study of SARS-CoV-2 pathogenesis and for the assessment of MCMs.


Assuntos
Causas de Morte , Infecções por Coronavirus/patologia , Progressão da Doença , Peptidil Dipeptidase A/genética , Pneumonia Viral/patologia , Síndrome Respiratória Aguda Grave/patologia , Enzima de Conversão de Angiotensina 2 , Animais , COVID-19 , Infecções por Coronavirus/fisiopatologia , Modelos Animais de Doenças , Feminino , Humanos , Pulmão/patologia , Masculino , Camundongos , Camundongos Transgênicos , Pandemias , Pneumonia Viral/fisiopatologia , Síndrome Respiratória Aguda Grave/fisiopatologia , Índice de Gravidade de Doença , Taxa de Sobrevida , Replicação Viral/genética
7.
J Med Primatol ; 46(2): 42-47, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28145579

RESUMO

BACKGROUND: Myeloid sarcoma is a rare manifestation of myeloproliferative disorder defined as an extramedullary mass composed of myeloid precursor cells. A 9-month old, female, common marmoset (Callithrix jacchus) had increased respiratory effort. METHODS: A complete necropsy with histology and immunohistochemistry was performed. RESULTS: The thymus was replaced by a firm, gray-tan mass with a faint green tint, filling over 50% of the thoracic cavity. Sheets of granulocytes, lymphoid cells, nucleated erythrocytes, megakaryocytes, and hematopoietic precursors of indeterminate cell lineage replaced the thymus, perithymic connective tissue, mediastinal adipose tissues, epicardium, and much of the myocardium. The cells demonstrated diffuse strong cytoplasmic immunoreactivity for lysozyme, and strong, multifocal membranous immunoreactivity for CD117. CONCLUSION: We report the first case of a myeloid sarcoma in a common marmoset (C. jacchus), similar to reported human cases of mediastinal myeloid sarcoma, and present a review of myeloproliferative diseases from the veterinary literature.


Assuntos
Callithrix , Neoplasias do Mediastino/veterinária , Doenças dos Macacos/diagnóstico , Doenças dos Macacos/etiologia , Sarcoma Mieloide/veterinária , Animais , Feminino , Neoplasias do Mediastino/diagnóstico , Neoplasias do Mediastino/etiologia , Sarcoma Mieloide/diagnóstico , Sarcoma Mieloide/etiologia
8.
US Army Med Dep J ; : 28-33, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23277442

RESUMO

Military working dogs are often trained and/or work in locations where the potential for snake bites is increased. Knowledge of the local venomous snakes, the effects of their venom, and appropriate initial stabilization is essential for the US Army Veterinary Corps officer (VCO). As military practitioners, VCOs are uniquely situated to benefit from collaboration with other military assets for air evacuation and treatment of their patients. A recent clinical case of envenomation is presented, along with a review of the most current literature regarding treatment of envenomation in veterinary patients.


Assuntos
Antivenenos/uso terapêutico , Venenos de Crotalídeos/toxicidade , Doenças do Cão/terapia , Mordeduras de Serpentes/veterinária , Viperidae , Administração Intravenosa/veterinária , Animais , Venenos de Crotalídeos/análise , Doenças do Cão/diagnóstico , Doenças do Cão/fisiopatologia , Cães , Membro Anterior/patologia , North Carolina , Mordeduras de Serpentes/diagnóstico , Mordeduras de Serpentes/fisiopatologia , Mordeduras de Serpentes/terapia , Resultado do Tratamento , Serviço Veterinário Militar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...