Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-32489233

RESUMO

We report recent advances in absolute x-ray wavelength metrology in the context of producing modern standard reference data. Primary x-ray wavelength standards are produced today using diffraction spectrometers using crystal optics arranged to be operated in dispersive and non-dispersive geometries, giving natural-line-width limited profiles with high resolution and accuracy. With current developments, measurement results can be made traceable to the Système internationale definition of the meter by using diffraction crystals that have absolute lattice-spacing provenance through x-ray-optical interferometry. Recent advances in goniometry, innovation of electronic x-ray area detectors, and new in situ alignment and measurement methods now permit robust measurement and quantification of previously-elusive systematic uncertainties. This capability supports infrastructures like the NIST Standard Reference Data programs and the International Initiative on X-ray Fundamental Parameters and their contributions to science and industry. Such data projects are further served by employing complementary wavelength-and energy-dispersive spectroscopic techniques. This combination can provide, among other things, new tabulations of less-intense x-ray lines that need to be identified in x-ray fluorescence investigation of uncharacterized analytes. After delineating the traceability chain for primary x-ray wavelength standards, and NIST efforts to produce standard reference data and materials in particular, this paper posits the new opportunities for x-ray reference data tabulation that modern methods now afford.

2.
J Res Natl Inst Stand Technol ; 109(1): 1-25, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-27366594

RESUMO

The fundamental parameters approach to line profile fitting uses physically based models to generate the line profile shapes. Fundamental parameters profile fitting (FPPF) has been used to synthesize and fit data from both parallel beam and divergent beam diffractometers. The refined parameters are determined by the diffractometer configuration. In a divergent beam diffractometer these include the angular aperture of the divergence slit, the width and axial length of the receiving slit, the angular apertures of the axial Soller slits, the length and projected width of the x-ray source, the absorption coefficient and axial length of the sample. In a parallel beam system the principal parameters are the angular aperture of the equatorial analyser/Soller slits and the angular apertures of the axial Soller slits. The presence of a monochromator in the beam path is normally accommodated by modifying the wavelength spectrum and/or by changing one or more of the axial divergence parameters. Flat analyzer crystals have been incorporated into FPPF as a Lorentzian shaped angular acceptance function. One of the intrinsic benefits of the fundamental parameters approach is its adaptability any laboratory diffractometer. Good fits can normally be obtained over the whole 20 range without refinement using the known properties of the diffractometer, such as the slit sizes and diffractometer radius, and emission profile.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...