Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38649284

RESUMO

BACKGROUND: Chronic alcohol consumption is a major public health issue. The primary organ damaged by alcohol abuse is the liver, leading to alcohol-associated liver disease (ALD). ALD begins with hepatic steatosis and can progress to fibrosis and cirrhosis; however, we have an incomplete understanding of ALD pathogenesis. Interestingly, the liver is also the major organ for vitamin A metabolism and storage, and ALD has previously been linked with altered hepatic vitamin A homeostasis. We hypothesize that alcohol-induced vitamin A depletion disrupts its normal function in the liver, contributing to the pathogenesis of ALD. To test this hypothesis, we postulated that adding copious vitamin A to the diet might alleviate ALD, and conversely, that a vitamin A deficient diet would worsen ALD. METHODS: We conducted two dietary intervention studies in mice comparing deficient (0 IU/g diet) and copious (25 IU/g diet) dietary vitamin A intake versus control (4 IU/g diet), using the NIAAA chronic-binge model of ALD. Hepatic steatosis was assessed using histopathological and biochemical approaches. Tissue Vitamin A levels were measured using high-performance liquid chromatography. Markers of ALD, hepatic inflammation and lipid metabolism were analyzed by the quantitative polymerase chain reaction and western blotting. RESULTS: As expected, a 0 IU/g Vitamin A diet decreased, and a 25 IU/g Vitamin A diet increased hepatic Vitamin A stores. However, alcohol induced changes in hepatic triglyceride levels, markers of hepatic lipid metabolism, inflammation and fibrosis were not significantly different in mice consuming a copious or deficient vitamin A diet compared to control. CONCLUSIONS: Altered vitamin A intake and hepatic vitamin A storage have a minor effect on the pathogenesis of ALD. Thus, given the known link between altered retinoic acid signaling and ALD, future studies that further explore this linkage are warranted.

2.
Pediatr Res ; 95(4): 912-921, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37990078

RESUMO

Congenital diaphragmatic hernia (CDH) is a severe birth defect and a major cause of neonatal respiratory distress. Impacting ~2-3 in 10,000 births, CDH is associated with a high mortality rate, and long-term morbidity in survivors. Despite the significant impact of CDH, its etiology remains incompletely understood. In 2003, Greer et al. proposed the Retinoid Hypothesis, stating that the underlying cause of abnormal diaphragm development in CDH was related to altered retinoid signaling. In this review, we provide a comprehensive update to the Retinoid Hypothesis, discussing work published in support of this hypothesis from the past 20 years. This includes reviewing teratogenic and genetic models of CDH, lessons from the human genetics of CDH and epidemiological studies, as well as current gaps in the literature and important areas for future research. The Retinoid Hypothesis is one of the leading hypotheses to explain the etiology of CDH, as we continue to better understand the role of retinoid signaling in diaphragm development, we hope that this information can be used to improve CDH outcomes. IMPACT: This review provides a comprehensive update on the Retinoid Hypothesis, which links abnormal retinoic acid signaling to the etiology of congenital diaphragmatic hernia. The Retinoid Hypothesis was formulated in 2003. Twenty years later, we extensively review the literature in support of this hypothesis from both animal models and humans.


Assuntos
Hérnias Diafragmáticas Congênitas , Animais , Gravidez , Recém-Nascido , Feminino , Humanos , Hérnias Diafragmáticas Congênitas/genética , Retinoides/genética , Diafragma , Tretinoína , Parto
3.
Hepatobiliary Surg Nutr ; 12(3): 450-452, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37351127
4.
Metabolites ; 13(2)2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36837793

RESUMO

Non-alcoholic fatty liver disease (NAFLD), the hepatic manifestation of the metabolic syndrome, is a global health problem. Currently, no pharmacological treatment is approved for NAFLD. Natural health products, including bioactive peptides, are potential candidates to aid in the management of metabolic syndrome-related conditions, including insulin resistance and obesity. In this study, we hypothesized that an egg-white-derived bioactive peptide QAMPFRVTEQE (Peptide 2) would improve systemic and local white adipose tissue insulin sensitivity, thereby preventing high-fat diet-induced exacerbation of pathological features associated with NAFLD, such as lipid droplet size and number, inflammation, and hepatocyte hypertrophy in high-fat diet-fed mice. Similar to rosiglitazone, Peptide 2 supplementation improved systemic insulin resistance during the hyperinsulinemic-euglycemic clamp and enhanced insulin signalling in white adipose tissue, modulating ex vivo lipolysis. In the liver, compared with high-fat diet fed animals, Peptide 2 supplemented animals presented decreased hepatic cholesterol accumulation (p < 0.05) and area of individual hepatic lipid droplet by around 50% (p = 0.09) and reduced hepatic inflammatory infiltration (p < 0.05) whereas rosiglitazone exacerbated steatosis. In conclusion, Peptide 2 supplementation improved insulin sensitivity and decreased hepatic steatosis, unlike the insulin-sensitizing drug rosiglitazone.

5.
J Nutr Biochem ; 112: 109227, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36435294

RESUMO

Long-term alterations in kidney structure and function have been observed in offspring exposed to perinatal stressors such as iron deficiency (ID), albeit the mechanisms underlying these changes remain unclear. Here, we assessed how perinatal ID alters renal vitamin A metabolism, an important contributor to nephrogenesis, in the developing kidney. Pregnant Sprague Dawley rats were fed either an iron-restricted or -replete diet throughout gestation, and offspring were studied on postnatal day (PD)1 and 28. Maternal iron restriction results in reduced renal retinoid concentrations in male and female offspring on PD1 (P=.005). Nephron endowment was reduced by 21% in male perinatal ID offspring (P<.001), whereas it was unaffected in perinatal ID females. Perinatal ID resulted in sex-dependent changes in kidney retinoid synthesis and metabolism, whereby male offspring exhibited increased expression of Raldh2 and Rar/Rxr isoforms, while females exhibited unchanged or decreased expression (all interaction P<.05). Male perinatal ID offspring exhibit sex-specific enhancements of retinoic acid pathway signaling components on PD1, including Gdnf (P<.01) and Ctnnb1 (P<.01), albeit robust upregulation of RA transcriptional target Stra6 was observed in both sexes (P=.006). On PD28, perinatal ID resulted in elevated renal retinoid concentrations (P=.02) coinciding with enhanced expression of Raldh2 (P=.04), but not any Rar isoform or Rxr. Further, perinatal ID resulted in robust upregulation of Gdnf, Ret, Ctnnb1, associated with further increases in both Cxcr4 and Stra6 (all P<.01) at PD28. Together, these data suggest perinatal ID results in sustained sex-dependent perturbations in vitamin A metabolism, which likely underlie sex-specific reductions in nephron endowment.


Assuntos
Deficiências de Ferro , Tretinoína , Gravidez , Ratos , Animais , Masculino , Feminino , Fator Neurotrófico Derivado de Linhagem de Célula Glial , Ratos Sprague-Dawley , Vitamina A , Rim/metabolismo , Ferro/metabolismo
6.
Front Physiol ; 13: 940974, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35864895

RESUMO

Alcohol-associated liver disease (ALD) is a major public health issue that significantly contributes to human morbidity and mortality, with no FDA-approved therapeutic intervention available. The health burden of ALD has worsened during the COVID-19 pandemic, which has been associated with a spike in alcohol abuse, and a subsequent increase in hospitalization rates for ALD. A key knowledge gap that underlies the lack of novel therapies for ALD is a need to better understand the pathogenic mechanisms that contribute to ALD initiation, particularly with respect to hepatic lipid accumulation and the development of fatty liver, which is the first step in the ALD spectrum. The goal of this review is to evaluate the existing literature to gain insight into the pathogenesis of alcohol-associated fatty liver, and to synthesize alcohol's known effects on hepatic lipid metabolism. To achieve this goal, we specifically focus on studies from transgenic mouse models of ALD, allowing for a genetic dissection of alcohol's effects, and integrate these findings with our current understanding of ALD pathogenesis. Existing studies using transgenic mouse models of ALD have revealed roles for specific genes involved in hepatic lipid metabolic pathways including fatty acid uptake, mitochondrial ß-oxidation, de novo lipogenesis, triglyceride metabolism, and lipid droplet formation. In addition to reviewing this literature, we conclude by identifying current gaps in our understanding of how alcohol abuse impairs hepatic lipid metabolism and identify future directions to address these gaps. In summary, transgenic mice provide a powerful tool to understand alcohol's effect on hepatic lipid metabolism and highlight that alcohol abuse has diverse effects that contribute to the development of alcohol-associated fatty liver disease.

7.
PLoS One ; 17(1): e0261675, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35030193

RESUMO

Chronic alcohol consumption leads to a spectrum of liver disease that is associated with significant global mortality and morbidity. Alcohol is known to deplete hepatic vitamin A content, which has been linked to the pathogenesis of alcoholic liver disease. It has been suggested that induction of Cytochrome P450 2E1 (CYP2E1) contributes to alcohol-induced hepatic vitamin A depletion, but the possible contributions of other retinoid-catabolizing CYPs have not been well studied. The main objective of this study was to better understand alcohol-induced hepatic vitamin A depletion and test the hypothesis that alcohol-induced depletion of hepatic vitamin A is due to CYP-mediated oxidative catabolism. This hypothesis was tested in a mouse model of chronic alcohol consumption, including wild type and Cyp2e1 -/- mice. Our results show that chronic alcohol consumption is associated with decreased levels of hepatic retinol, retinyl esters, and retinoic acid. Moreover, the depletion of hepatic retinoid is associated with the induction of multiple retinoid catabolizing CYPs, including CYP26A1, and CYP26B1 in alcohol fed wild type mice. In Cyp2e1 -/- mice, alcohol-induced retinol decline is blunted but retinyl esters undergo a change in their acyl composition and decline upon alcohol exposure like WT mice. In conclusion, the alcohol induced decline in hepatic vitamin A content is associated with increased expression of multiple retinoid-catabolizing CYPs, including the retinoic acid specific hydroxylases CYP26A1 and CYP26B1.


Assuntos
Retinoides
8.
Pediatr Res ; 91(1): 83-91, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-33654278

RESUMO

BACKGROUND: Congenital diaphragmatic hernia (CDH) is a severe birth defect associated with high perinatal mortality and long-term morbidity. The etiology of CDH is poorly understood although abnormal retinoid signaling has been proposed to contribute to abnormal diaphragm development. Existing epidemiological data suggest that inadequate dietary vitamin A intake is a risk factor for developing CDH. METHODS: Using a mouse model of teratogen-induced CDH, the objective of this study was to test the hypothesis that low maternal vitamin A intake contributes to abnormal diaphragm development. To test this hypothesis, we optimized a model of altered maternal dietary vitamin A intake and a teratogenic model of CDH in mice that recapitulates the hallmark features of posterolateral diaphragmatic hernia in humans. RESULTS: Our data uniquely show that low maternal dietary vitamin A intake and marginal vitamin A status increases the incidence of teratogen-induced CDH in mice. CONCLUSION: Low dietary vitamin A intake and marginal vitamin A status lead to an increased incidence of teratogen-induced CDH in mice, highlighting the importance of adequate dietary vitamin A intake and CDH risk. IMPACT: This study describes and validates a mouse model of altered maternal and fetal vitamin A status. This study links existing epidemiological data with a mouse model of teratogen-induced congenital diaphragmatic hernia, highlighting the importance of low maternal vitamin A intake as a risk factor for the development of congenital diaphragmatic hernia. This study supports the Retinoid Hypothesis, which posits that the etiology of congenital diaphragmatic hernia is linked to abnormal retinoid signaling in the developing diaphragm.


Assuntos
Hérnias Diafragmáticas Congênitas/epidemiologia , Teratogênicos/toxicidade , Vitamina A/administração & dosagem , Animais , Dieta , Feminino , Hérnias Diafragmáticas Congênitas/induzido quimicamente , Incidência , Camundongos , Camundongos Endogâmicos BALB C , Gravidez , Vitamina A/toxicidade
9.
Sci Rep ; 10(1): 20386, 2020 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-33230291

RESUMO

Fatty acid translocase (CD36) is a scavenger receptor with multiple ligands and diverse physiological actions. We recently reported that alcohol-induced hepatic retinoid mobilization is impaired in Cd36-/- mice, leading us to hypothesize that CD36 has a novel role in hepatic vitamin A mobilization. Given the central role of the liver in systemic vitamin A homeostasis we also postulated that absence of CD36 would affect whole-body vitamin A homeostasis. We tested this hypothesis in aging wild type and Cd36-/- mice, as well as mice fed a vitamin A-deficient diet. In agreement with our hypothesis, Cd36-/- mice accumulated hepatic retinyl ester stores with age to a greater extent than wild type mice. However, contrary to expectations, Cd36-/- mice consuming a vitamin A-deficient diet mobilized hepatic retinoid similar to wild type mice. Interestingly, we observed that Cd36-/- mice had significantly reduced white adipose tissue retinoid levels compared to wild type mice. In conclusion, we demonstrate that the absence of CD36 alters whole-body vitamin A homeostasis and suggest that this phenotype is secondary to the impaired chylomicron metabolism previously reported in these mice.


Assuntos
Envelhecimento/metabolismo , Antígenos CD36/deficiência , Homeostase/genética , Fígado/metabolismo , Deficiência de Vitamina A/metabolismo , Vitamina A/metabolismo , Aciltransferases/genética , Aciltransferases/metabolismo , Tecido Adiposo Branco/metabolismo , Tecido Adiposo Branco/patologia , Envelhecimento/genética , Animais , Peso Corporal , Antígenos CD36/genética , Quilomícrons/metabolismo , Regulação da Expressão Gênica , Fígado/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Tamanho do Órgão , Receptores do Ácido Retinoico/genética , Receptores do Ácido Retinoico/metabolismo , Ácido Retinoico 4 Hidroxilase/genética , Ácido Retinoico 4 Hidroxilase/metabolismo , Proteínas Celulares de Ligação ao Retinol/genética , Proteínas Celulares de Ligação ao Retinol/metabolismo , Ésteres de Retinil/metabolismo , Deficiência de Vitamina A/genética , Deficiência de Vitamina A/patologia
10.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1865(11): 158597, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-31904420

RESUMO

Carotenoids form an important part of the human diet, consumption of which has been associated with many health benefits. With the growing global burden of liver disease, increasing attention has been paid on the possible beneficial role that carotenoids may play in the liver. This review focuses on carotenoid actions in non-alcoholic fatty liver disease (NAFLD), and alcoholic liver disease (ALD). Indeed, many human studies have suggested an association between decreased circulating levels of carotenoids and increased incidence of NAFLD and ALD. The literature describing supplementation of individual carotenoids in rodent models of NAFLD and ALD is reviewed, with particular attention paid to ß-carotene and lycopene, but also including ß-cryptoxanthin, lutein, zeaxanthin, and astaxanthin. The effect of beta-carotene oxygenase 1 and 2 knock-out mice on hepatic lipid metabolism is also discussed. In general, there is evidence to suggest that carotenoids have beneficial effects in animal models of both NAFLD and ALD. Mechanistically, these benefits may occur via three possible modes of action: 1) improved hepatic antioxidative status broadly attributed to carotenoids in general, 2) the generation of vitamin A from ß-carotene and ß-cryptoxanthin, leading to improved hepatic retinoid signaling, and 3) the generation of apocarotenoid metabolites from ß-carotene and lycopene, that may regulate hepatic signaling pathways. Gaps in our knowledge regarding carotenoid mechanisms of action in the liver are highlighted throughout, and the review ends by emphasizing the importance of dose effects, mode of delivery, and mechanism of action as important areas for further study. This article is part of a Special Issue entitled Carotenoids recent advances in cell and molecular biology edited by Johannes von Lintig and Loredana Quadro.


Assuntos
Hepatopatias Alcoólicas/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Vitamina A/metabolismo , beta-Caroteno 15,15'-Mono-Oxigenase/genética , Animais , beta-Criptoxantina/metabolismo , Carotenoides/metabolismo , Humanos , Hepatopatias Alcoólicas/genética , Hepatopatias Alcoólicas/patologia , Hepatopatias Alcoólicas/terapia , Luteína/metabolismo , Camundongos , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/patologia , Hepatopatia Gordurosa não Alcoólica/terapia , Vitamina A/biossíntese , Vitamina A/genética , Xantofilas/metabolismo , Zeaxantinas/metabolismo
11.
Lipids Health Dis ; 18(1): 204, 2019 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-31757217

RESUMO

The ability of mammals to store and draw on fat reserves has been a driving force throughout evolution in an environment with intermittent nutrient availability. The discovery of adipose triglyceride lipase (ATGL) as a triglyceride lipase provided a heightened understanding of the mechanisms governing mobilization of fat reserves from adipose tissue. ATGL catalyses the initial step in adipose triglyceride lipolysis, working in concert with other enzymes to mobilize triglyceride for energy production. In addition to the role of ATGL in adipose tissue triglyceride mobilization, ATGL plays crucial roles in regulating lipid homeostasis in other tissues. These roles have been characterized primarily using transgenic mice with tissue-specific ATGL ablation. For example, the global ATGL knockout induces a severe cardiac defect that results in premature mortality that is mimicked by inducible cardiomyocyte-specific ATGL knockout. Global- and adipose-specific ATGL ablation induces a whole-body shift from lipid metabolism to glucose metabolism to satisfy metabolic demand primarily facilitated by an increase in glucose uptake by skeletal muscle. Generation of liver-specific ATGL knockouts has implicated hepatic lipolysis as a critical component of normal liver function. Analysis of ß-cell ATGL knockouts implicates the necessity of pancreatic ATGL in insulin secretion. The objective of this review is to discuss the contributions of ATGL to systemic lipid- and glucose-homeostasis discovered through the study of transgenic mice.


Assuntos
Tecido Adiposo/metabolismo , Glucose/metabolismo , Glicólise/genética , Lipase/genética , Lipólise/genética , Triglicerídeos/metabolismo , Animais , Expressão Gênica , Homeostase/genética , Insulina/metabolismo , Lipase/deficiência , Lipase/metabolismo , Fígado/metabolismo , Camundongos , Camundongos Transgênicos , Músculo Esquelético/metabolismo , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Pâncreas/metabolismo
12.
Pediatr Res ; 86(5): 676, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31413356

RESUMO

A correction to this paper has been published and can be accessed via a link at the top of the paper.

13.
Biochim Biophys Acta Mol Basis Dis ; 1865(1): 14-25, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30300671

RESUMO

Phosphatidylethanolamine N-methyltransferase (PEMT) converts phosphatidylethanolamine (PE) to phosphatidylcholine (PC), mainly in the liver. Pemt-/- mice are protected from high-fat diet (HFD)-induced obesity and insulin resistance, but develop severe non-alcoholic fatty liver disease (NAFLD) when fed a HFD, mostly due to impaired VLDL secretion. Oxidative stress is thought to be an essential factor in the progression from simple steatosis to steatohepatitis. Vitamin E is an antioxidant that has been clinically used to improve NAFLD pathology. Our aim was to determine whether supplementation of the diet with vitamin E could attenuate HFD-induced hepatic steatosis and its progression to NASH in Pemt-/- mice. Treatment with vitamin E (0.5 g/kg) for 3 weeks improved VLDL-TG secretion and normalized cholesterol metabolism, but failed to reduce hepatic TG content. Moreover, vitamin E treatment was able to reduce hepatic oxidative stress, inflammation and fibrosis. We also observed abnormal ceramide metabolism in Pemt-/- mice fed a HFD, with elevation of ceramides and other sphingolipids and higher expression of mRNAs for acid ceramidase (Asah1) and ceramide kinase (Cerk). Interestingly, vitamin E supplementation restored Asah1 and Cerk mRNA and sphingolipid levels. Together this study shows that vitamin E treatment efficiently prevented the progression from simple steatosis to steatohepatitis in mice lacking PEMT.


Assuntos
Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Fosfatidiletanolamina N-Metiltransferase/metabolismo , Vitamina E/metabolismo , Vitamina E/farmacologia , Ceramidase Ácida , Animais , Antioxidantes/farmacologia , Colesterol/metabolismo , Dieta Hiperlipídica , Suplementos Nutricionais , Modelos Animais de Doenças , Progressão da Doença , Fígado Gorduroso/metabolismo , Fibrose/tratamento farmacológico , Inflamação/tratamento farmacológico , Resistência à Insulina , Metabolismo dos Lipídeos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Fosfatidiletanolamina N-Metiltransferase/genética , Fosfotransferases (Aceptor do Grupo Álcool) , RNA Mensageiro , Vitamina E/administração & dosagem
14.
Pediatr Res ; 85(1): 13-19, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30287891

RESUMO

Congenital diaphragmatic hernia (CDH) is a commonly occurring major congenital anomaly with a profound impact on neonatal mortality. The etiology of CDH is poorly understood and is complicated by multiple clinical presentations, reflecting the location and type of diaphragm defect. With the increased power of genetic screening, more genes are being associated with CDH, creating a knowledge gap between CDH-associated genes and their contribution to diaphragm embryogenesis. Our goal was to investigate CDH-associated genes and identify common pathways that may lead to abnormal diaphragm development. A comprehensive list of CDH-associated genes was identified from the literature and categorized according to multiple factors, including type of CDH. We undertook a large-scale gene function analysis using gene ontology to identify significantly enriched biological pathways and molecular functions associated with our gene set. We identified 218 CDH-associated genes. Our gene ontology analysis showed that genes representing distinct biological pathways are significantly enriched in relation to different clinical presentations of CDH. This includes retinoic acid signaling in Bochdalek CDH, myogenesis in diaphragm eventration, and angiogenesis in central tendon defects. We have identified unique genotype-phenotype relationships highlighting the major genetic drivers of the different types of CDH.


Assuntos
Ontologia Genética , Redes Reguladoras de Genes , Hérnias Diafragmáticas Congênitas/genética , Regulação da Expressão Gênica , Marcadores Genéticos , Predisposição Genética para Doença , Hérnias Diafragmáticas Congênitas/diagnóstico , Humanos , Fenótipo , Transdução de Sinais/genética
15.
Nutrients ; 10(9)2018 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-30189611

RESUMO

Mucositis and muscle wasting are two common toxicity effects of cancer treatment in head and neck cancer (HNC). There is limited data evaluating cancer treatment toxicities in relation to vitamin status. This study aimed to assess changes in vitamin status during HNC treatment in relation to body composition, inflammation and mucositis. In this prospective cohort study, dietary intakes (3-day food record), plasma levels of vitamins and C-reactive protein (CRP) were assessed at baseline (at diagnosis) and post-treatment (after 6⁻8 weeks of radiation therapy with or without chemotherapy). Computed tomography images were used to quantify body composition. Mucositis information was collected from health records of patients. Twenty-eight HNC patients (age 60 ± 10 years) completed both study time points. Patients who developed mucositis had significantly lower dietary intake of vitamins and plasma 25-hydroxy vitamin D (25-OHD) and all-trans retinol levels (p < 0.02). Patients lost a considerable amount of muscle mass (3.4 kg) and fat mass (3.6 kg) over the course of treatment. There was a trend toward greater muscle loss in patients with 25-OHD < 50 nmol/L compared to patients with 25-OHD ≥ 50 nmol/L (p = 0.07). A significant negative correlation was found between plasma all-trans retinol and CRP level at the end of treatment (p = 0.03). Poor vitamin status could be a contributing factor in developing treatment-induced toxicities.


Assuntos
Neoplasias de Cabeça e Pescoço/radioterapia , Mucosite/etiologia , Músculo Esquelético/patologia , Atrofia Muscular/etiologia , Deficiência de Vitamina A/complicações , Deficiência de Vitamina D/complicações , Vitaminas/sangue , Tecido Adiposo/metabolismo , Idoso , Proteína C-Reativa/metabolismo , Dieta , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mucosite/sangue , Atrofia Muscular/sangue , Estudos Prospectivos , Vitamina A/administração & dosagem , Vitamina A/sangue , Deficiência de Vitamina A/sangue , Vitamina D/análogos & derivados , Vitamina D/sangue , Deficiência de Vitamina D/sangue , Vitaminas/administração & dosagem
16.
Alcohol Clin Exp Res ; 42(12): 2298-2312, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30192394

RESUMO

BACKGROUND: The first stage of alcoholic liver disease is hepatic steatosis. While alcohol is known to profoundly impact hepatic lipid metabolism, gaps in our knowledge remain regarding the mechanisms leading to alcohol-induced hepatic triglyceride (TG) accumulation. As the sole enzymes catalyzing the final step in TG synthesis, diacylglycerol O-acyltransferase (DGAT) 1 and 2 are potentially important contributors to alcoholic steatosis. Our goal was to study the effects of dietary fat content on alcohol-induced hepatic TG accumulation, and the relative contribution of DGAT1 and DGAT2 to alcoholic steatosis. METHODS: These studies were carried out in wild-type (WT) mice fed alcohol-containing high-fat or low-fat formulations of Lieber-DeCarli liquid diets, as well as follow-up studies in Dgat1-/- mice. RESULTS: A direct comparison of the low-fat and high-fat liquid diet in WT mice revealed surprisingly similar levels of alcoholic steatosis, although there were underlying differences in the pattern of hepatic lipid accumulation and expression of genes involved in hepatic lipid metabolism. Follow-up studies in Dgat1-/- mice revealed that these animals are protected from alcoholic steatosis when consumed as part of a high-fat diet, but not a low-fat diet. CONCLUSIONS: Dietary macronutrient composition influences the relative contribution of DGAT1 and DGAT2 to alcoholic steatosis, such that in the context of alcohol and a high-fat diet, DGAT1 predominates.


Assuntos
Diacilglicerol O-Aciltransferase/genética , Dieta , Fígado Gorduroso Alcoólico/genética , Nutrientes , Animais , Dieta com Restrição de Gorduras , Gorduras na Dieta , Fígado Gorduroso Alcoólico/patologia , Regulação Enzimológica da Expressão Gênica , Metabolismo dos Lipídeos/efeitos dos fármacos , Metabolismo dos Lipídeos/genética , Fígado/metabolismo , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Triglicerídeos/metabolismo
18.
Sci Rep ; 7: 43474, 2017 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-28262768

RESUMO

Retinoic acid, an active metabolite of dietary vitamin A, acts as a ligand for nuclear receptor transcription factors with more than 500 known target genes. It is becoming increasingly clear that alcohol has a significant impact on cellular retinoic acid metabolism, with resultant effects on its function. Here, we test the hypothesis that chronic alcohol consumption impairs retinoic acid signaling in brown adipose tissue (BAT), leading to impaired BAT function and thermoregulation. All studies were conducted in age-matched, male mice consuming alcohol-containing liquid diets. Alcohol's effect on BAT was assessed by histology, qPCR, HPLC, LC/MS and measures of core body temperature. Our data show that chronic alcohol consumption decreases BAT mass, with a resultant effect on thermoregulation. Follow-up mechanistic studies reveal a decreased triglyceride content in BAT, as well as impaired retinoic acid homeostasis, associated with decreased BAT levels of retinoic acid in alcohol-consuming mice. Our work highlights a hitherto uncharacterized effect of alcohol on BAT function, with possible implications for thermoregulation and energy metabolism in drinkers. Our data indicate that alcohol's effects on brown adipose tissue may be mediated through altered retinoic acid signaling.


Assuntos
Tecido Adiposo Marrom/efeitos dos fármacos , Consumo de Bebidas Alcoólicas/metabolismo , Regulação da Temperatura Corporal/efeitos dos fármacos , Etanol/administração & dosagem , Regulação da Expressão Gênica/efeitos dos fármacos , Tretinoína/metabolismo , Aciltransferases/deficiência , Aciltransferases/genética , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Marrom/patologia , Consumo de Bebidas Alcoólicas/genética , Consumo de Bebidas Alcoólicas/patologia , Família Aldeído Desidrogenase 1 , Animais , Regulação da Temperatura Corporal/genética , Peso Corporal/efeitos dos fármacos , Dieta/métodos , Metabolismo Energético/efeitos dos fármacos , Isoenzimas/genética , Isoenzimas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Retinal Desidrogenase/genética , Retinal Desidrogenase/metabolismo , Ácido Retinoico 4 Hidroxilase/genética , Ácido Retinoico 4 Hidroxilase/metabolismo , Receptor alfa de Ácido Retinoico/genética , Receptor alfa de Ácido Retinoico/metabolismo , Transdução de Sinais , Triglicerídeos/metabolismo , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo , Vitamina A/metabolismo
19.
Curr Mol Pharmacol ; 10(3): 195-206, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-26278391

RESUMO

Chronic alcohol consumption can lead to the development of alcoholic fatty liver disease. The underlying pathogenic mechanisms however, have not been fully elucidated. Here, we review the current state of the art regarding the application of lipidomics to study alcohol's effect on hepatic lipids. It is clear that alcohol has a profound effect on the hepatic lipidome, with documented changes in the major lipid categories (i.e. fatty acyls, glycerolipids, glycerophospholipids, sphingolipids, sterol lipids and prenol lipids). Alcohol's most striking effect is the marked change in the hepatic fatty acyl pool. This effect includes increased levels of 18-carbon fatty acyl chains incorporated into multiple lipid species, as well as a general shift toward increased unsaturation of fatty acyl moieties. In addition to our literature review, we also make several recommendations to consider when designing lipidomic studies into alcohol's effects. These recommendations include integration of lipidomic data with other measures of lipid metabolism, inclusion of multiple experimental time points, and presentation of quantitative data. We believe rigorous analysis of the hepatic lipidome can yield new insight into the pathogenesis of alcohol-induced fatty liver. While the existing literature has been largely descriptive, the field is poised to apply lipidomics to yield a new level of understanding on alcohol's effects on hepatic lipid metabolism.


Assuntos
Fígado Gorduroso/metabolismo , Metabolismo dos Lipídeos , Fígado/metabolismo , Animais , Fígado Gorduroso/etiologia , Fígado Gorduroso/patologia , Humanos , Transdução de Sinais
20.
Subcell Biochem ; 81: 95-125, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27830502

RESUMO

It is well established that chylomicron remnant (dietary) vitamin A is taken up from the circulation by hepatocytes, but more than 80 % of the vitamin A in the liver is stored in hepatic stellate cells (HSC). It presently is not known how vitamin A is transferred from hepatocytes to HSCs for storage. Since retinol-binding protein 4 (RBP4), a protein that is required for mobilizing stored vitamin A, is synthesized solely by hepatocytes and not HSCs, it similarly is not known how vitamin A is transferred from HSCs to hepatocytes. Although it has long been thought that RBP4 is absolutely essential for delivering vitamin A to tissues, recent research has proven that this notion is incorrect since total RBP4-deficiency is not lethal. In addition to RBP4, vitamin A is also found in the circulation bound to lipoproteins and as retinoic acid bound to albumin. It is not known how these different circulating pools of vitamin A contribute to the vitamin A needs of different tissues. In our view, better insight into these three issues is required to better understand vitamin A absorption, storage and mobilization. Here, we provide an up to date synthesis of current knowledge regarding the intestinal uptake of dietary vitamin A, the storage of vitamin A within the liver, and the mobilization of hepatic vitamin A stores, and summarize areas where our understanding of these processes is incomplete.


Assuntos
Fígado/metabolismo , Vitamina A/metabolismo , Tecido Adiposo/metabolismo , Animais , Transporte Biológico , Carotenoides/metabolismo , Quilomícrons/metabolismo , Previsões , Células Estreladas do Fígado/metabolismo , Hepatócitos/metabolismo , Humanos , Absorção Intestinal , Lipoproteínas/metabolismo , Modelos Biológicos , Proteínas Plasmáticas de Ligação ao Retinol/metabolismo , Albumina Sérica/metabolismo , Deficiência de Vitamina A/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...