Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Clin Invest ; 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38652544

RESUMO

Carbohydrates and lipids provide the majority of substrates to fuel mitochondrial oxidative phosphorylation (OXPHOS). Metabolic inflexibility, defined as an impaired ability to switch between these fuels, is implicated in a number of metabolic diseases. Here we explore the mechanism by which physical inactivity promotes metabolic inflexibility in skeletal muscle. We developed a mouse model of sedentariness, small mouse cage (SMC) that, unlike other classic models of disuse in mice, faithfully recapitulated metabolic responses that occur in humans. Bioenergetic phenotyping of skeletal muscle mitochondria displayed metabolic inflexibility induced by physical inactivity, demonstrated by a reduction in pyruvate-stimulated respiration (JO2) in absence of a change in palmitate-stimulated JO2. Pyruvate resistance in these mitochondria was likely driven by a decrease in phosphatidylethanolamine (PE) abundance in the mitochondrial membrane. Reduction in mitochondrial PE by heterozygous deletion of phosphatidylserine decarboxylase (PSD) was sufficient to induce metabolic inflexibility measured at the whole-body level, as well as at the level of skeletal muscle mitochondria. Low mitochondrial PE in C2C12 myotubes was sufficient to increase glucose flux towards lactate. We further implicate that resistance to pyruvate metabolism is due to attenuated mitochondrial entry via mitochondrial pyruvate carrier (MPC). These findings suggest a mechanism by which mitochondrial PE directly regulates MPC activity to modulate metabolic flexibility in mice.

2.
bioRxiv ; 2024 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-38352459

RESUMO

The established clinical therapy for the treatment of acute myocardial infarction is primary percutaneous coronary intervention (PPCI) to restore blood flow to the ischemic myocardium. PPCI is effective at reperfusing the ischemic myocardium, however the rapid re-introduction of oxygenated blood also can cause ischemia-reperfusion (I/R) injury. Reperfusion injury is the culprit for up to half of the final myocardial damage, but there are no clinical interventions to reduce I/R injury. We previously demonstrated that inhibiting the lactate exporter, monocarboxylate transporter 4 (MCT4), and re-directing pyruvate towards oxidation can blunt isoproterenol-induced hypertrophy. Based on this finding, we hypothesized that the same pathway might be important during I/R. Here, we establish that the pyruvate-lactate metabolic axis plays a critical role in determining myocardial salvage following injury. Post-I/R injury, the mitochondrial pyruvate carrier (MPC), required for pyruvate oxidation, is upregulated in the surviving myocardium following I/R injury. MPC loss in cardiomyocytes caused more cell death with less myocardial salvage, which was associated with an upregulation of MCT4 in the myocardium at risk of injury. We deployed a pharmacological strategy of MCT4 inhibition with a highly selective compound (VB124) at the time of reperfusion. This strategy normalized reactive oxygen species (ROS), mitochondrial membrane potential (Δψ), and Ca 2+ , increased pyruvate entry to TCA cycle, and improved myocardial salvage and functional outcomes following I/R injury. Altogether, our data suggest that normalizing the pyruvate-lactate metabolic axis via MCT4 inhibition is a promising pharmacological strategy to mitigate I/R injury.

3.
Elife ; 132024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38251707

RESUMO

Mitochondrial membrane potential directly powers many critical functions of mitochondria, including ATP production, mitochondrial protein import, and metabolite transport. Its loss is a cardinal feature of aging and mitochondrial diseases, and cells closely monitor membrane potential as an indicator of mitochondrial health. Given its central importance, it is logical that cells would modulate mitochondrial membrane potential in response to demand and environmental cues, but there has been little exploration of this question. We report that loss of the Sit4 protein phosphatase in yeast increases mitochondrial membrane potential, both by inducing the electron transport chain and the phosphate starvation response. Indeed, a similarly elevated mitochondrial membrane potential is also elicited simply by phosphate starvation or by abrogation of the Pho85-dependent phosphate sensing pathway. This enhanced membrane potential is primarily driven by an unexpected activity of the ADP/ATP carrier. We also demonstrate that this connection between phosphate limitation and enhancement of mitochondrial membrane potential is observed in primary and immortalized mammalian cells as well as in Drosophila. These data suggest that mitochondrial membrane potential is subject to environmental stimuli and intracellular signaling regulation and raise the possibility for therapeutic enhancement of mitochondrial function even in defective mitochondria.


Assuntos
Fosfatos , Saccharomyces cerevisiae , Animais , Potencial da Membrana Mitocondrial , Fosfatos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Trifosfato de Adenosina/metabolismo , Respiração , Mamíferos/metabolismo
4.
JCI Insight ; 8(18)2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37639557

RESUMO

Diabetic cardiomyopathy, an increasingly global epidemic and a major cause of heart failure with preserved ejection fraction (HFpEF), is associated with hyperglycemia, insulin resistance, and intracardiomyocyte calcium mishandling. Here we identify that, in db/db mice with type 2 diabetes-induced HFpEF, abnormal remodeling of cardiomyocyte transverse-tubule microdomains occurs with downregulation of the membrane scaffolding protein cardiac bridging integrator 1 (cBIN1). Transduction of cBIN1 by AAV9 gene therapy can restore transverse-tubule microdomains to normalize intracellular distribution of calcium-handling proteins and, surprisingly, glucose transporter 4 (GLUT4). Cardiac proteomics revealed that AAV9-cBIN1 normalized components of calcium handling and GLUT4 translocation machineries. Functional studies further identified that AAV9-cBIN1 normalized insulin-dependent glucose uptake in diabetic cardiomyocytes. Phenotypically, AAV9-cBIN1 rescued cardiac lusitropy, improved exercise intolerance, and ameliorated hyperglycemia in diabetic mice. Restoration of transverse-tubule microdomains can improve cardiac function in the setting of diabetic cardiomyopathy and can also improve systemic glycemic control.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Cardiomiopatias Diabéticas , Insuficiência Cardíaca , Hiperglicemia , Animais , Camundongos , Glicemia , Cardiomiopatias Diabéticas/genética , Cardiomiopatias Diabéticas/terapia , Insuficiência Cardíaca/terapia , Cálcio , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/terapia , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/terapia , Volume Sistólico , Antiarrítmicos , Cardiotônicos , Miócitos Cardíacos , Hiperglicemia/terapia , Proteínas Adaptadoras de Transdução de Sinal , Aminoácidos , Inibidores Enzimáticos , Terapia Genética
5.
Cell Metab ; 35(5): 730-732, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37137286

RESUMO

Recently, Liu et al. uncovered an unexpected L-lactate-Zn2+ interaction in the active site of the deSUMOylating enzyme SENP1 that triggers a sequence of events that lead to mitotic exit. This study opens the door to new research avenues of metabolite-metal interactions controlling cellular decisions and functions.


Assuntos
Ácido Láctico , Mitose , Pontos de Checagem do Ciclo Celular
6.
Nat Cell Biol ; 25(4): 616-625, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37012464

RESUMO

Metabolism is intertwined with various cellular processes, including controlling cell fate, influencing tumorigenesis, participating in stress responses and more. Metabolism is a complex, interdependent network, and local perturbations can have indirect effects that are pervasive across the metabolic network. Current analytical and technical limitations have long created a bottleneck in metabolic data interpretation. To address these shortcomings, we developed Metaboverse, a user-friendly tool to facilitate data exploration and hypothesis generation. Here we introduce algorithms that leverage the metabolic network to extract complex reaction patterns from data. To minimize the impact of missing measurements within the network, we introduce methods that enable pattern recognition across multiple reactions. Using Metaboverse, we identify a previously undescribed metabolite signature that correlated with survival outcomes in early stage lung adenocarcinoma patients. Using a yeast model, we identify metabolic responses suggesting an adaptive role of citrate homeostasis during mitochondrial dysfunction facilitated by the citrate transporter, Ctp1. We demonstrate that Metaboverse augments the user's ability to extract meaningful patterns from multi-omics datasets to develop actionable hypotheses.


Assuntos
Algoritmos , Redes e Vias Metabólicas , Humanos
7.
Science ; 379(6636): 996-1003, 2023 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-36893255

RESUMO

Metabolic networks are interconnected and influence diverse cellular processes. The protein-metabolite interactions that mediate these networks are frequently low affinity and challenging to systematically discover. We developed mass spectrometry integrated with equilibrium dialysis for the discovery of allostery systematically (MIDAS) to identify such interactions. Analysis of 33 enzymes from human carbohydrate metabolism identified 830 protein-metabolite interactions, including known regulators, substrates, and products as well as previously unreported interactions. We functionally validated a subset of interactions, including the isoform-specific inhibition of lactate dehydrogenase by long-chain acyl-coenzyme A. Cell treatment with fatty acids caused a loss of pyruvate-lactate interconversion dependent on lactate dehydrogenase isoform expression. These protein-metabolite interactions may contribute to the dynamic, tissue-specific metabolic flexibility that enables growth and survival in an ever-changing nutrient environment.


Assuntos
Metabolismo dos Carboidratos , L-Lactato Desidrogenase , Metaboloma , Humanos , Ácidos Graxos/metabolismo , L-Lactato Desidrogenase/metabolismo , Especificidade de Órgãos , Espectrometria de Massas/métodos , Regulação Alostérica
8.
Sci Adv ; 8(39): eabq0117, 2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36179030

RESUMO

The fate of pyruvate is a defining feature in many cell types. One major fate is mitochondrial entry via the mitochondrial pyruvate carrier (MPC). We found that diffuse large B cell lymphomas (DLBCLs) consume mitochondrial pyruvate via glutamate-pyruvate transaminase 2 to enable α-ketoglutarate production as part of glutaminolysis. This led us to discover that glutamine exceeds pyruvate as a carbon source for the tricarboxylic acid cycle in DLBCLs. As a result, MPC inhibition led to decreased glutaminolysis in DLBCLs, opposite to previous observations in other cell types. We also found that MPC inhibition or genetic depletion decreased DLBCL proliferation in an extracellular matrix (ECM)-like environment and xenografts, but not in a suspension environment. Moreover, the metabolic profile of DLBCL cells in ECM is markedly different from cells in a suspension environment. Thus, we conclude that the synergistic consumption and assimilation of glutamine and pyruvate enables DLBCL proliferation in an extracellular environment-dependent manner.

9.
Cell Metab ; 33(3): 629-648.e10, 2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33333007

RESUMO

The metabolic rewiring of cardiomyocytes is a widely accepted hallmark of heart failure (HF). These metabolic changes include a decrease in mitochondrial pyruvate oxidation and an increased export of lactate. We identify the mitochondrial pyruvate carrier (MPC) and the cellular lactate exporter monocarboxylate transporter 4 (MCT4) as pivotal nodes in this metabolic axis. We observed that cardiac assist device-induced myocardial recovery in chronic HF patients was coincident with increased myocardial expression of the MPC. Moreover, the genetic ablation of the MPC in cultured cardiomyocytes and in adult murine hearts was sufficient to induce hypertrophy and HF. Conversely, MPC overexpression attenuated drug-induced hypertrophy in a cell-autonomous manner. We also introduced a novel, highly potent MCT4 inhibitor that mitigated hypertrophy in cultured cardiomyocytes and in mice. Together, we find that alteration of the pyruvate-lactate axis is a fundamental and early feature of cardiac hypertrophy and failure.


Assuntos
Proteínas de Transporte de Ânions/metabolismo , Cardiomegalia/patologia , Insuficiência Cardíaca/patologia , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Proteínas Musculares/metabolismo , Animais , Proteínas de Transporte de Ânions/antagonistas & inibidores , Proteínas de Transporte de Ânions/genética , Cardiomegalia/induzido quimicamente , Cardiomegalia/complicações , Insuficiência Cardíaca/etiologia , Coração Auxiliar , Humanos , Ácido Láctico/metabolismo , Potencial da Membrana Mitocondrial , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/antagonistas & inibidores , Proteínas de Transporte da Membrana Mitocondrial/genética , Transportadores de Ácidos Monocarboxílicos/antagonistas & inibidores , Transportadores de Ácidos Monocarboxílicos/genética , Proteínas Musculares/antagonistas & inibidores , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Ácido Pirúvico/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Função Ventricular Esquerda/fisiologia
10.
Cell Rep ; 30(9): 2889-2899.e6, 2020 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-32130894

RESUMO

Metabolic pathways regulate T cell development and function, but many remain understudied. Recently, the mitochondrial pyruvate carrier (MPC) was identified as the transporter that mediates pyruvate entry into mitochondria, promoting pyruvate oxidation. Here we find that deleting Mpc1, an obligate MPC subunit, in the hematopoietic system results in a specific reduction in peripheral αß T cell numbers. MPC1-deficient T cells have defective thymic development at the ß-selection, intermediate single positive (ISP)-to-double-positive (DP), and positive selection steps. We find that early thymocytes deficient in MPC1 display alterations to multiple pathways involved in T cell development. This results in preferred escape of more activated T cells. Finally, mice with hematopoietic deletion of Mpc1 are more susceptible to experimental autoimmune encephalomyelitis. Altogether, our study demonstrates that pyruvate oxidation by T cell precursors is necessary for optimal αß T cell development and that its deficiency results in reduced but activated peripheral T cell populations.


Assuntos
Proteínas de Transporte de Ânions/metabolismo , Homeostase , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Linfócitos T/metabolismo , Timo/crescimento & desenvolvimento , Timo/metabolismo , Animais , Proteínas de Transporte de Ânions/deficiência , Deleção de Genes , Glicólise , Hematopoese , Humanos , Inflamação/patologia , Células Jurkat , Contagem de Linfócitos , Camundongos , Camundongos Endogâmicos C57BL , Proteínas de Transporte da Membrana Mitocondrial/deficiência , Transportadores de Ácidos Monocarboxílicos/deficiência , Oxirredução , Fosforilação Oxidativa , Ácido Pirúvico/metabolismo , Timócitos/metabolismo
11.
Cell Rep ; 29(1): 76-88.e7, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31577957

RESUMO

Efforts to target glutamine metabolism for cancer therapy have focused on the glutaminase isozyme GLS. The importance of the other isozyme, GLS2, in cancer has remained unclear, and it has been described as a tumor suppressor in some contexts. Here, we report that GLS2 is upregulated and essential in luminal-subtype breast tumors, which account for >70% of breast cancer incidence. We show that GLS2 expression is elevated by GATA3 in luminal-subtype cells but suppressed by promoter methylation in basal-subtype cells. Although luminal breast cancers resist GLS-selective inhibitors, we find that they can be targeted with a dual-GLS/GLS2 inhibitor. These results establish a critical role for GLS2 in mammary tumorigenesis and advance our understanding of how to target glutamine metabolism in cancer.


Assuntos
Neoplasias da Mama/metabolismo , Glutaminase/metabolismo , Fígado/metabolismo , Animais , Neoplasias da Mama/genética , Carcinogênese/genética , Carcinogênese/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Metilação de DNA/genética , Feminino , Fator de Transcrição GATA3/metabolismo , Genes Supressores de Tumor/fisiologia , Glutamina/metabolismo , Células HEK293 , Humanos , Células MCF-7 , Camundongos , Regiões Promotoras Genéticas/genética
12.
Cell ; 175(2): 502-513.e13, 2018 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-30245009

RESUMO

Acetate is a major nutrient that supports acetyl-coenzyme A (Ac-CoA) metabolism and thus lipogenesis and protein acetylation. However, its source is unclear. Here, we report that pyruvate, the end product of glycolysis and key node in central carbon metabolism, quantitatively generates acetate in mammals. This phenomenon becomes more pronounced in the context of nutritional excess, such as during hyperactive glucose metabolism. Conversion of pyruvate to acetate occurs through two mechanisms: (1) coupling to reactive oxygen species (ROS) and (2) neomorphic enzyme activity from keto acid dehydrogenases that enable function as pyruvate decarboxylases. Further, we demonstrate that de novo acetate production sustains Ac-CoA pools and cell proliferation in limited metabolic environments, such as during mitochondrial dysfunction or ATP citrate lyase (ACLY) deficiency. By virtue of de novo acetate production being coupled to mitochondrial metabolism, there are numerous possible regulatory mechanisms and links to pathophysiology.


Assuntos
Acetatos/metabolismo , Glucose/metabolismo , Ácido Pirúvico/metabolismo , ATP Citrato (pro-S)-Liase/fisiologia , Acetilcoenzima A/biossíntese , Acetilcoenzima A/metabolismo , Acetilação , Animais , Feminino , Glicólise/fisiologia , Lipogênese/fisiologia , Masculino , Mamíferos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Oxirredutases , Piruvato Descarboxilase/fisiologia , Espécies Reativas de Oxigênio/metabolismo
13.
Trends Cancer ; 3(3): 169-180, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28393116

RESUMO

Reliance on glutamine has long been considered a hallmark of cancer cell metabolism. However, some recent studies have challenged this notion in vivo, prompting a need for further clarifications on the role of glutamine metabolism in cancer. We find that there is ample evidence of an essential role for glutamine in tumors and that a variety of factors, including tissue type, the underlying cancer genetics, the tumor microenvironment and other variables such as diet and host physiology collectively influence the role of glutamine in cancer. Thus the requirements for glutamine in cancer are overall highly heterogeneous. In this review, we discuss the implications both for basic science and for targeting glutamine metabolism in cancer therapy.


Assuntos
Glutaminase/metabolismo , Glutamina/metabolismo , Neoplasias/metabolismo , Glutaminase/genética , Humanos , Terapia de Alvo Molecular , Neoplasias/patologia , Neoplasias/terapia
15.
Cancer Metab ; 3: 10, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26401273

RESUMO

BACKGROUND: Glucose metabolism links metabolic status to protein acetylation. However, it remains poorly understood to what extent do features of glucose metabolism contribute to protein acetylation and whether the process can be dynamically and quantitatively regulated by differing rates of glycolysis. RESULTS: Here, we show that titratable rates of glycolysis with corresponding changes in the levels of glycolytic intermediates result in a graded remodeling of a bulk of the metabolome and resulted in gradual changes in total histone acetylation levels. Dynamic histone acetylation levels were found and most strongly correlated with acetyl coenzyme A (ac-CoA) levels and inversely associated with the ratio of ac-CoA to free CoA. A multiplexed stable isotopic labeling by amino acids in cell culture (SILAC)-based proteomics approach revealed that the levels of half of identified histone acetylation sites as well as other lysine acylation modifications are tuned by the rate of glycolysis demonstrating that glycolytic rate affects specific acylation sites. CONCLUSIONS: We demonstrate that histone acylation is directly sensed by glucose flux in a titratable, dose-dependent manner that is modulated by glycolytic flux and that a possible function of the Warburg Effect, a metabolic state observed in cancers with enhanced glucose metabolism, is to confer specific signaling effects on cells.

16.
Elife ; 32014 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-25009227

RESUMO

Aerobic glycolysis or the Warburg Effect (WE) is characterized by the increased metabolism of glucose to lactate. It remains unknown what quantitative changes to the activity of metabolism are necessary and sufficient for this phenotype. We developed a computational model of glycolysis and an integrated analysis using metabolic control analysis (MCA), metabolomics data, and statistical simulations. We identified and confirmed a novel mode of regulation specific to aerobic glycolysis where flux through GAPDH, the enzyme separating lower and upper glycolysis, is the rate-limiting step in the pathway and the levels of fructose (1,6) bisphosphate (FBP), are predictive of the rate and control points in glycolysis. Strikingly, negative flux control was found and confirmed for several steps thought to be rate-limiting in glycolysis. Together, these findings enumerate the biochemical determinants of the WE and suggest strategies for identifying the contexts in which agents that target glycolysis might be most effective.


Assuntos
Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/metabolismo , Biologia Computacional/métodos , Frutosedifosfatos/química , Glucose/química , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Glicólise , Células HCT116 , Humanos , L-Lactato Desidrogenase/metabolismo , Ácido Láctico/química , Espectrometria de Massas , Metabolômica/métodos , Modelos Químicos , Método de Monte Carlo , Fenótipo , Fosforilação
17.
J Vis Exp ; (87)2014 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-24894601

RESUMO

Metabolite profiling has been a valuable asset in the study of metabolism in health and disease. However, current platforms have different limiting factors, such as labor intensive sample preparations, low detection limits, slow scan speeds, intensive method optimization for each metabolite, and the inability to measure both positively and negatively charged ions in single experiments. Therefore, a novel metabolomics protocol could advance metabolomics studies. Amide-based hydrophilic chromatography enables polar metabolite analysis without any chemical derivatization. High resolution MS using the Q-Exactive (QE-MS) has improved ion optics, increased scan speeds (256 msec at resolution 70,000), and has the capability of carrying out positive/negative switching. Using a cold methanol extraction strategy, and coupling an amide column with QE-MS enables robust detection of 168 targeted polar metabolites and thousands of additional features simultaneously.  Data processing is carried out with commercially available software in a highly efficient way, and unknown features extracted from the mass spectra can be queried in databases.


Assuntos
Cromatografia Líquida/métodos , Metabolômica/métodos , Espectrometria de Massas em Tandem/métodos , Bases de Dados Factuais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...