Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pediatr Blood Cancer ; 66(10): e27783, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31304677

RESUMO

Natural killer (NK) cells have potential utility in pediatric cancer immunotherapy for their ability to lyse diverse tumor targets, lack of dependence on mutation-associated tumor antigens, and for their relative safety demonstrated so far in clinical trials. Here, we evaluate the cytotoxic potential of expanded NK cells against a well-characterized panel of pediatric cancer cell lines representing Ewing sarcoma, rhabdomyosarcoma, neuroblastoma, lymphoma, leukemia, and brain tumors. We correlate their sensitivity NK cell lysis with tumor phenotypic, transcriptomic, and genetic determinants, and correlate known immunogenetic determinants with donor NK cell potency. Although ligand expression on cell lines stratified according to hematologic versus nonhematologic cancer types, the sensitivity to NK cell lysis varied widely and did not correlate with cancer type, expression of individual activating or inhibitory ligands, gene-expression clusters of NK cell ligands, disease status (newly diagnosed or relapsed), or MYCN amplification. Rather, sensitivity to NK cell-mediated lysis was associated with a novel 96-gene cluster of predominantly carcinoma-, apoptosis-, and cell death-related pathways, and with functional p53 status. NK cell potency was strongly associated with activating KIR gene content, but not with KIR/KIR-ligand mismatch. This study suggests that adoptive immunotherapy with expanded NK cells has the potential for a wide range of pediatric cancers, identifies potential biomarkers of efficacy and response, and establishes a foundation for using this cell line panel for the preclinical evaluation of immunotherapies.


Assuntos
Citotoxicidade Imunológica/imunologia , Células Matadoras Naturais/imunologia , Neoplasias/imunologia , Transcriptoma , Apoptose/imunologia , Carcinoma/imunologia , Carcinoma/patologia , Linhagem Celular Tumoral , Humanos , Imunoterapia Adotiva/métodos , Células Matadoras Naturais/transplante , Neoplasias/patologia
2.
PLoS One ; 7(7): e41171, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22911754

RESUMO

Eukaryotic elongation factor 2 kinase (eEF-2K), through its phosphorylation of elongation factor 2 (eEF2), provides a mechanism by which cells can control the rate of the elongation phase of protein synthesis. The activity of eEF-2K is increased in rapidly proliferating malignant cells, is inhibited during mitosis, and may contribute to the promotion of autophagy in response to anti-cancer therapies. The purpose of this study was to examine the therapeutic potential of targeting eEF-2K in breast cancer tumors. Through the systemic administration of liposomal eEF-2K siRNA (twice a week, i.v. 150 µg/kg), the expression of eEF-2K was down-regulated in vivo in an orthotopic xenograft mouse model of a highly aggressive triple negative MDA-MB-231 tumor. This targeting resulted in a substantial decrease in eEF2 phosphorylation in the tumors, and led to the inhibition of tumor growth, the induction of apoptosis and the sensitization of tumors to the chemotherapy agent doxorubicin. eEF-2K down-modulation in vitro resulted in a decrease in the expression of c-Myc and cyclin D1 with a concomitant increase in the expression of p27(Kip1). A decrease in the basal activity of c-Src (phospho-Tyr-416), focal adhesion kinase (phospho-Tyr-397), and Akt (phospho-Ser-473) was also detected following eEF-2K down-regulation in MDA-MB-231 cells, as determined by Western blotting. Where tested, similar results were seen in ER-positive MCF-7 cells. These effects were also accompanied by a decrease in the observed invasive phenotype of the MDA-MB-231 cells. These data support the notion that the disruption of eEF-2K expression in breast cancer cells results in the down-regulation of signaling pathways affecting growth, survival and resistance and has potential as a therapeutic approach for the treatment of breast cancer.


Assuntos
Antibióticos Antineoplásicos/farmacologia , Neoplasias da Mama/genética , Doxorrubicina/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Quinase do Fator 2 de Elongação/genética , Inativação Gênica , Animais , Antibióticos Antineoplásicos/administração & dosagem , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células , Ciclina D1/genética , Inibidor de Quinase Dependente de Ciclina p27/genética , Modelos Animais de Doenças , Doxorrubicina/administração & dosagem , Feminino , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Regulação Neoplásica da Expressão Gênica , Genes src , Humanos , Camundongos , Invasividade Neoplásica/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Interferência de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...