Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
mBio ; 15(7): e0119824, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38832773

RESUMO

Stenotrophomonas maltophilia expresses a type IV protein secretion system (T4SS) that promotes contact-dependent killing of other bacteria and does so partly by secreting the effector TfcB. Here, we report the structure of TfcB, comprising an N-terminal domain similar to the catalytic domain of glycosyl hydrolase (GH-19) chitinases and a C-terminal domain for recognition and translocation by the T4SS. Utilizing a two-hybrid assay to measure effector interactions with the T4SS coupling protein VirD4, we documented the existence of five more T4SS substrates. One of these was protein 20845, an annotated nuclease. A S. maltophilia mutant lacking the gene for 20845 was impaired for killing Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa. Moreover, the cloned 20845 gene conferred robust toxicity, with the recombinant E. coli being rescued when 20845 was co-expressed with its cognate immunity protein. The 20845 effector was an 899 amino-acid protein, comprised of a GHH-nuclease domain in its N-terminus, a large central region of indeterminant function, and a C-terminus for secretion. Engineered variants of the 20845 gene that had mutations in the predicted catalytic site did not impede E. coli, indicating that the antibacterial effect of 20845 involves its nuclease activity. Using flow cytometry with DNA staining, we determined that 20845, but not its mutant variants, confers a loss in DNA content of target bacteria. Database searches revealed that uncharacterized homologs of 20845 occur within a range of bacteria. These data indicate that the S. maltophilia T4SS promotes interbacterial competition through the action of multiple toxic effectors, including a potent, novel DNase.IMPORTANCEStenotrophomonas maltophilia is a multi-drug-resistant, Gram-negative bacterium that is an emerging pathogen of humans. Patients with cystic fibrosis are particularly susceptible to S. maltophilia infection. In hospital water systems and various types of infections, S. maltophilia co-exists with other bacteria, including other pathogens such as Pseudomonas aeruginosa. We previously demonstrated that S. maltophilia has a functional VirB/D4 type VI protein secretion system (T4SS) that promotes contact-dependent killing of other bacteria. Since most work on antibacterial systems involves the type VI secretion system, this observation remains noteworthy. Moreover, S. maltophilia currently stands alone as a model for a human pathogen expressing an antibacterial T4SS. Using biochemical, genetic, and cell biological approaches, we now report both the discovery of a novel antibacterial nuclease (TfdA) and the first structural determination of a bactericidal T4SS effector (TfcB).


Assuntos
Proteínas de Bactérias , Stenotrophomonas maltophilia , Sistemas de Secreção Tipo IV , Stenotrophomonas maltophilia/genética , Stenotrophomonas maltophilia/enzimologia , Stenotrophomonas maltophilia/metabolismo , Sistemas de Secreção Tipo IV/genética , Sistemas de Secreção Tipo IV/metabolismo , Sistemas de Secreção Tipo IV/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/enzimologia , Pseudomonas aeruginosa/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Conformação Proteica
2.
Appl Environ Microbiol ; 83(24)2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-28986375

RESUMO

In enteric bacteria such as Escherichia coli, the transcription factor SgrR and the small RNA SgrS regulate the response to glucose phosphate stress, a metabolic dysfunction that results in growth inhibition and stems from the intracellular accumulation of sugar phosphates. SgrR activates the transcription of sgrS, and SgrS helps to rescue cells from stress in part by inhibiting the uptake of stressor sugar phosphates. While the regulatory targets of this stress response are well described, less is known about how the SgrR-SgrS response itself is regulated. To further characterize the regulation of the glucose phosphate stress response, we screened global regulator gene mutants for growth changes during glucose phosphate stress. We found that deleting dksA, which encodes a regulator of the stringent response to nutrient starvation, decreases growth under glucose phosphate stress conditions. The stringent response alarmone regulator ppGpp (synthesized by RelA and SpoT) also contributes to recovery from glucose phosphate stress: as with dksA, mutating relA and spoT worsens the growth defect of an sgrS mutant during stress, although the sgrS relA spoT mutant defect was only detectable under lower stress levels. In addition, mutating dksA or relA and spoT lowers sgrS expression (as measured with a P sgrS -lacZ fusion), suggesting that the observed growth defects may be due to decreased induction of the glucose phosphate stress response or related targets. This regulatory effect could occur through altered sgrR transcription, as dksA and relA spoT mutants also exhibit decreased expression of a P sgrR -lacZ fusion. Taken together, this work supports a role for stringent response regulators in aiding the recovery from glucose phosphate stress.IMPORTANCE Glucose phosphate stress leads to growth inhibition in bacteria such as Escherichia coli when certain sugar phosphates accumulate in the cell. The transcription factor SgrR and the small RNA SgrS alleviate this stress in part by preventing further sugar phosphate transport. While the regulatory mechanisms of this response have been characterized, the regulation of the SgrR-SgrS response itself is not as well understood. Here, we describe a role for stringent response regulators DksA and ppGpp in the response to glucose phosphate stress. sgrS dksA and sgrS relA spoT mutants exhibit growth defects under glucose phosphate stress conditions. These defects may be due to a decrease in stress response induction, as deleting dksA or relA and spoT also results in decreased expression of sgrS and sgrR This research presents one of the first regulatory effects on the glucose phosphate stress response outside SgrR and SgrS and depicts a novel connection between these two metabolic stress responses.


Assuntos
Proteínas de Escherichia coli/genética , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica/genética , Genes Reguladores/fisiologia , Ligases/genética , Pirofosfatases/genética , Glucose/metabolismo , Fosfatos/metabolismo , Estresse Fisiológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...