Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
N Biotechnol ; 77: 130-138, 2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-37643666

RESUMO

Glycoside hydrolases (GHs) have been employed for industrial and biotechnological purposes and often play an important role in new applications. The red blood cell (RBC) antigen system depends on the composition of oligosaccharides on the surface of erythrocytes, thus defining the ABO blood type classification. Incorrect blood transfusions may lead to fatal consequences, making the availability of the correct blood group critical. In this regard, it has been demonstrated that some GHs may be helpful in the conversion of groups A and B blood types to produce group O universal donor blood. GHs belonging to the GH109 family are of particular interest for this application due to their ability to convert blood from group A to group O. This work describes the biochemical characterisation of three novel GH109 enzymes (NAg68, NAg69 and NAg71) and the exploration of their ability to produce enzymatically converted RBCs (ECO-RBC). The three enzymes showed superior specificity on pNP-α-N-acetylgalactosamine compared to previously reported GH109 enzymes. These novel enzymes were able to act on purified antigen-A trisaccharides and produce ECO-RBC from human donor blood. NAg71 converted type A RBC to group O with increased efficiency in the presence of dextran compared to a commercially available GH109, previously used for this application.


Assuntos
Eritrócitos , Doadores de Tecidos , Humanos , Eritrócitos/metabolismo , Glicosídeo Hidrolases/metabolismo , Oligossacarídeos , Biotecnologia , Sistema ABO de Grupos Sanguíneos/análise , Sistema ABO de Grupos Sanguíneos/química , Sistema ABO de Grupos Sanguíneos/metabolismo
2.
Essays Biochem ; 67(4): 731-751, 2023 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-37341134

RESUMO

(Hyper)thermophilic archaeal glycosidases are enzymes that catalyze the hydrolysis of glycosidic bonds to break down complex sugars and polysaccharides at high temperatures. These enzymes have an unique structure that allows them to remain stable and functional in extreme environments such as hot springs and hydrothermal vents. This review provides an overview of the current knowledge and milestones on the structures and functions of (hyper)thermophilic archaeal glycosidases and their potential applications in various fields. In particular, this review focuses on the structural characteristics of these enzymes and how these features relate to their catalytic activity by discussing different types of (hyper)thermophilic archaeal glycosidases, including ß-glucosidases, chitinase, cellulases and α-amylases, describing their molecular structures, active sites, and mechanisms of action, including their role in the hydrolysis of carbohydrates. By providing a comprehensive overview of (hyper)thermophilic archaeal glycosidases, this review aims to stimulate further research into these fascinating enzymes.


Assuntos
Archaea , Glicosídeo Hidrolases , Glicosídeo Hidrolases/química , Archaea/química , Temperatura Alta , Hidrólise
3.
Biomolecules ; 13(1)2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36671499

RESUMO

Archaea represents the third domain of life, displaying a closer relationship with eukaryotes than bacteria. These microorganisms are valuable model systems for molecular biology and biotechnology. In fact, nowadays, methanogens, halophiles, thermophilic euryarchaeota, and crenarchaeota are the four groups of archaea for which genetic systems have been well established, making them suitable as model systems and allowing for the increasing study of archaeal genes' functions. Furthermore, thermophiles are used to explore several aspects of archaeal biology, such as stress responses, DNA replication and repair, transcription, translation and its regulation mechanisms, CRISPR systems, and carbon and energy metabolism. Extremophilic archaea also represent a valuable source of new biomolecules for biological and biotechnological applications, and there is growing interest in the development of engineered strains. In this review, we report on some of the most important aspects of the use of archaea as a model system for genetic evolution, the development of genetic tools, and their application for the elucidation of the basal molecular mechanisms in this domain of life. Furthermore, an overview on the discovery of new enzymes of biotechnological interest from archaea thriving in extreme environments is reported.


Assuntos
Archaea , Euryarchaeota , Archaea/metabolismo , Bactérias/genética , Euryarchaeota/genética , Euryarchaeota/metabolismo , Biotecnologia , Biologia Molecular
4.
Int J Mol Sci ; 23(18)2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-36142415

RESUMO

The increasing interest for environmentally friendly technologies is driving the transition from fossil-based economy to bioeconomy. A key enabler for circular bioeconomy is to valorize renewable biomasses as feedstock to extract high value-added chemicals. Within this transition the discovery and the use of robust biocatalysts to replace toxic chemical catalysts play a significant role as technology drivers. To meet both the demands, we performed microbial enrichments on two energy crops, used as low-cost feed for extremophilic consortia. A culture-dependent approach coupled to metagenomic analysis led to the discovery of more than 300 glycoside hydrolases and to characterize a new α-glucosidase from an unknown hyperthermophilic archaeon. Aglu1 demonstrated to be the most active archaeal GH31 on 4Np-α-Glc and it showed unexpected specificity vs. kojibiose, revealing to be a promising candidate for biotechnological applications such as the liquefaction/saccharification of starch.


Assuntos
Glicosídeo Hidrolases , alfa-Glucosidases , Archaea/química , Biomassa , Produtos Agrícolas , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/genética , Metagenômica , Amido
5.
J Enzyme Inhib Med Chem ; 36(1): 2068-2079, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34565280

RESUMO

Pompe disease is an inherited metabolic disorder due to the deficiency of the lysosomal acid α-glucosidase (GAA). The only approved treatment is enzyme replacement therapy with the recombinant enzyme (rhGAA). Further approaches like pharmacological chaperone therapy, based on the stabilising effect induced by small molecules on the target enzyme, could be a promising strategy. However, most known chaperones could be limited by their potential inhibitory effects on patient's enzymes. Here we report on the discovery of novel chaperones for rhGAA, L- and D-carnitine, and the related compound acetyl-D-carnitine. These drugs stabilise the enzyme at pH and temperature without inhibiting the activity and acted synergistically with active-site directed pharmacological chaperones. Remarkably, they enhanced by 4-fold the acid α-glucosidase activity in fibroblasts from three Pompe patients with added rhGAA. This synergistic effect of L-carnitine and rhGAA has the potential to be translated into improved therapeutic efficacy of ERT in Pompe disease.


Assuntos
Carnitina/farmacologia , Inibidores de Glicosídeo Hidrolases/farmacologia , Lisossomos/efeitos dos fármacos , Chaperonas Moleculares/farmacologia , alfa-Glucosidases/metabolismo , Regulação Alostérica/efeitos dos fármacos , Carnitina/química , Relação Dose-Resposta a Droga , Inibidores de Glicosídeo Hidrolases/química , Humanos , Lisossomos/enzimologia , Chaperonas Moleculares/química , Estrutura Molecular , Relação Estrutura-Atividade
6.
Front Microbiol ; 12: 688061, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34149676

RESUMO

Genetic code decoding, initially considered to be universal and immutable, is now known to be flexible. In fact, in specific genes, ribosomes deviate from the standard translational rules in a programmed way, a phenomenon globally termed recoding. Translational recoding, which has been found in all domains of life, includes a group of events occurring during gene translation, namely stop codon readthrough, programmed ± 1 frameshifting, and ribosome bypassing. These events regulate protein expression at translational level and their mechanisms are well known and characterized in viruses, bacteria and eukaryotes. In this review we summarize the current state-of-the-art of recoding in the third domain of life. In Archaea, it was demonstrated and extensively studied that translational recoding regulates the decoding of the 21st and the 22nd amino acids selenocysteine and pyrrolysine, respectively, and only one case of programmed -1 frameshifting has been reported so far in Saccharolobus solfataricus P2. However, further putative events of translational recoding have been hypothesized in other archaeal species, but not extensively studied and confirmed yet. Although this phenomenon could have some implication for the physiology and adaptation of life in extreme environments, this field is still underexplored and genes whose expression could be regulated by recoding are still poorly characterized. The study of these recoding episodes in Archaea is urgently needed.

7.
Int J Mol Sci ; 22(7)2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33805072

RESUMO

In the field of biocatalysis and the development of a bio-based economy, hemicellulases have attracted great interest for various applications in industrial processes. However, the study of the catalytic activity of the lignocellulose-degrading enzymes needs to be improved to achieve the efficient hydrolysis of plant biomasses. In this framework, hemicellulases from hyperthermophilic archaea show interesting features as biocatalysts and provide many advantages in industrial applications thanks to their stability in the harsh conditions encountered during the pretreatment process. However, the hemicellulases from archaea are less studied compared to their bacterial counterpart, and the activity of most of them has been barely tested on natural substrates. Here, we investigated the hydrolysis of xyloglucan oligosaccharides from two different plants by using, both synergistically and individually, three glycoside hydrolases from Saccharolobus solfataricus: a GH1 ß-gluco-/ß-galactosidase, a α-fucosidase belonging to GH29, and a α-xylosidase from GH31. The results showed that the three enzymes were able to release monosaccharides from xyloglucan oligosaccharides after incubation at 65 °C. The concerted actions of ß-gluco-/ß-galactosidase and the α-xylosidase on both xyloglucan oligosaccharides have been observed, while the α-fucosidase was capable of releasing all α-linked fucose units from xyloglucan from apple pomace, representing the first GH29 enzyme belonging to subfamily A that is active on xyloglucan.


Assuntos
Glucanos/química , Glicosídeo Hidrolases/metabolismo , Oligossacarídeos/química , Sulfolobus solfataricus/enzimologia , Xilanos/química , Glicosídeo Hidrolases/química , Hidrólise , Proteínas Recombinantes/química , Sementes/metabolismo , Tamarindus/metabolismo , Temperatura , Xilosidases/metabolismo
8.
Molecules ; 26(7)2021 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-33806142

RESUMO

Genetic decoding is flexible, due to programmed deviation of the ribosomes from standard translational rules, globally termed "recoding". In Archaea, recoding has been unequivocally determined only for termination codon readthrough events that regulate the incorporation of the unusual amino acids selenocysteine and pyrrolysine, and for -1 programmed frameshifting that allow the expression of a fully functional α-l-fucosidase in the crenarchaeon Saccharolobus solfataricus, in which several functional interrupted genes have been identified. Increasing evidence suggests that the flexibility of the genetic code decoding could provide an evolutionary advantage in extreme conditions, therefore, the identification and study of interrupted genes in extremophilic Archaea could be important from an astrobiological point of view, providing new information on the origin and evolution of the genetic code and on the limits of life on Earth. In order to shed some light on the mechanism of programmed -1 frameshifting in Archaea, here we report, for the first time, on the analysis of the transcription of this recoded archaeal α-l-fucosidase and of its full-length mutant in different growth conditions in vivo. We found that only the wild type mRNA significantly increased in S. solfataricus after cold shock and in cells grown in minimal medium containing hydrolyzed xyloglucan as carbon source. Our results indicated that the increased level of fucA mRNA cannot be explained by transcript up-regulation alone. A different mechanism related to translation efficiency is discussed.


Assuntos
Proteínas Arqueais/biossíntese , Regulação da Expressão Gênica em Archaea , Regulação Enzimológica da Expressão Gênica , Biossíntese de Proteínas , Sulfolobaceae/enzimologia , alfa-L-Fucosidase/biossíntese , Proteínas Arqueais/genética , Resposta ao Choque Frio , Sulfolobaceae/genética , alfa-L-Fucosidase/genética
9.
Molecules ; 25(17)2020 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-32899230

RESUMO

Terrestrial hot springs are of great interest to the general public and to scientists alike due to their unique and extreme conditions. These have been sought out by geochemists, astrobiologists, and microbiologists around the globe who are interested in their chemical properties, which provide a strong selective pressure on local microorganisms. Drivers of microbial community composition in these springs include temperature, pH, in-situ chemistry, and biogeography. Microbes in these communities have evolved strategies to thrive in these conditions by converting hot spring chemicals and organic matter into cellular energy. Following our previous metagenomic analysis of Pisciarelli hot springs (Naples, Italy), we report here the comparative metagenomic study of three novel sites, formed in Pisciarelli as result of recent geothermal activity. This study adds comprehensive information about phylogenetic diversity within Pisciarelli hot springs by peeking into possible mechanisms of adaptation to biogeochemical cycles, and high applicative potential of the entire set of genes involved in the carbohydrate metabolism in this environment (CAZome). This site is an excellent model for the study of biodiversity on Earth and biosignature identification, and for the study of the origin and limits of life.


Assuntos
Fontes Termais/microbiologia , Metagenômica , Consórcios Microbianos/genética , DNA/genética , DNA/isolamento & purificação , Bases de Dados Genéticas , Enzimas/metabolismo , Itália , Metagenoma , Anotação de Sequência Molecular , Filogenia
11.
FEBS J ; 287(6): 1116-1137, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31595646

RESUMO

The enzymes from hyperthermophilic microorganisms populating volcanic sites represent interesting cases of protein adaptation and biotransformations under conditions where conventional enzymes quickly denature. The difficulties in cultivating extremophiles severely limit access to this class of biocatalysts. To circumvent this problem, we embarked on the exploration of the biodiversity of the solfatara Pisciarelli, Agnano (Naples, Italy), to discover hyperthermophilic carbohydrate-active enzymes (CAZymes) and to characterize the entire set of such enzymes in this environment (CAZome). Here, we report the results of the metagenomic analysis of two mud/water pools that greatly differ in both temperature and pH (T = 85 °C and pH 5.5; T = 92 °C and pH 1.5, for Pool1 and Pool2, respectively). DNA deep sequencing and following in silico analysis led to 14 934 and 17 652 complete ORFs in Pool1 and Pool2, respectively. They exclusively belonged to archaeal cells and viruses with great genera variance within the phylum Crenarchaeota, which reflected the difference in temperature and pH of the two Pools. Surprisingly, 30% and 62% of all of the reads obtained from Pool1 and 2, respectively, had no match in nucleotide databanks. Genes associated with carbohydrate metabolism were 15% and 16% of the total in the two Pools, with 278 and 308 putative CAZymes in Pool1 and 2, corresponding to ~ 2.0% of all ORFs. Biochemical characterization of two CAZymes of a previously unknown archaeon revealed a novel subfamily GH5_19 ß-mannanase/ß-1,3-glucanase whose hemicellulose specificity correlates with the vegetation surrounding the sampling site, and a novel NAD+ -dependent GH109 with a previously unreported ß-N-acetylglucosaminide/ß-glucoside specificity. DATABASES: The sequencing reads are available in the NCBI Sequence Read Archive (SRA) database under the accession numbers SRR7545549 (Pool1) and SRR7545550 (Pool2). The sequences of GH5_Pool2 and GH109_Pool2 are available in GenBank database under the accession numbers MK869723 and MK86972, respectively. The environmental data relative to Pool1 and Pool2 (NCBI BioProject PRJNA481947) are available in the Biosamples database under the accession numbers SAMN09692669 (Pool1) and SAMN09692670 (Pool2).


Assuntos
Proteínas de Bactérias/genética , Ambientes Extremos , Glucana 1,3-beta-Glucosidase/genética , Metagenômica , beta-Manosidase/genética , Proteínas de Bactérias/metabolismo , Crenarchaeota/enzimologia , Glucana 1,3-beta-Glucosidase/metabolismo , Concentração de Íons de Hidrogênio , Temperatura , beta-Manosidase/metabolismo
12.
Mol Immunol ; 112: 347-357, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31254775

RESUMO

Peach and apricot can cause allergic reactions with symptoms ranging from mild to very severe, including anaphylaxis. Sometimes subjects allergic to fruits of the Prunus genus have been reported to be also allergic to rubber latex products. The objective of this study is the characterization of a newly identified peach and apricot protein showing similarities with the allergens Hev b 5 from rubber latex and Man e 5 from manioc. This protein has been named ENEA on the basis of the single letter amino acid code of the first four N-terminal residues of the isolated molecule. It has been found in very variable amounts in different peach cultivars and batches. ENEA was isolated from peach pulp extracts by chromatographic separations and identified by direct protein sequencing. At that time, the full length sequence was available only for the homologous protein of the taxonomically closely related apricot, which was produced as a recombinant molecule in Escherichia coli. The following availability of the full length sequence of peach ENEA revealed a very high identity (97%) with the apricot homolog. Similarly to Hev b 5 and to Man e 5, the structural characterization indicated that ENEA is an intrinsically disordered protein. The immunological properties, investigated by dot blotting, the ABA system and the FABER test, showed that ENEA is recognized by specific IgE of allergic patients. In a selected population of 31 patients reporting allergic reactions to peach fruit and/or IgE positive to Hev b 5, 28 and 27 subjects resulted co-sensitized to rENEA and Hev b 5 in the ABA and ISAC test, respectively. In a random population of 3305 suspected allergic patients, analyzed with the FABER test, 17 of them were sensitized to rENEA and 10 of them were also positive to Hev b 5. In addition, both the natural molecule from peach and the recombinant protein of apricot partially inhibited the IgE binding to Hev b 5. In conclusion, a new peach and apricot IgE-binding protein, cross-reacting with the major latex allergen Hev b 5, has been identified. Its variable concentration in the fruit might explain some occasionally occurring allergic reactions. The apricot molecule has recently been registered by the WHO/IUIS Allergen Nomenclature Sub-Committee with the allergen name Pru ar 5. The recombinant form of apricot ENEA, now available, will contribute to allergy diagnosis.


Assuntos
Antígenos de Plantas/imunologia , Reações Cruzadas/imunologia , Hipersensibilidade ao Látex/imunologia , Látex/imunologia , Proteínas de Plantas/imunologia , Prunus armeniaca/imunologia , Prunus persica/imunologia , Adulto , Idoso , Alérgenos/imunologia , Criança , Feminino , Galectina 3/imunologia , Humanos , Imunoglobulina E/imunologia , Masculino , Pessoa de Meia-Idade , Prunus/imunologia , Proteínas Recombinantes/imunologia , Adulto Jovem
13.
Extremophiles ; 23(4): 407-419, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31053933

RESUMO

In the framework of the discovery of new thermophilic enzymes of potential biotechnological interest, we embarked in the characterization of a new thermophilic esterase from the thermophilic bacterium Geobacillus thermodenitrificans. The phylogenetic analysis of the GTNG_0744 esterase indicated that the sequence belongs to the enterochelin/enterobactin esterase group, which have never been recognized as a family in the lipases/esterase classification. These enzymes catalyze the last step in the acquisition of environmental Fe3+ through siderophore hydrolysis. In silico analysis revealed, for the first time, that the machinery for the uptake of siderophores is present in G. thermodenitrificans. The purified recombinant enzyme, EstGtA3, showed different substrate specificity from known enterochelin/enterobactin esterases, recognizing short chain esters with a higher specificity constant for 4-NP caprylate. The enzyme does not require cofactors for its activity, is active in the pH range 7.0-8.5, has highest activity at 60 °C and is 100% stable when incubated for 16 h at 55 °C. DTT, ß-mercaptoethanol and Triton X-100 have an activating effect on the enzymatic activity. Organic solvents have in general a negative effect on the enzyme, but n-hexane is a strong activator up to 150, making EstGtA3 a good candidate for applications in biotechnology.


Assuntos
Proteínas de Bactérias/metabolismo , Esterases/metabolismo , Geobacillus/enzimologia , Termotolerância , Proteínas de Bactérias/química , Caprilatos/metabolismo , Estabilidade Enzimática , Esterases/química , Desnaturação Proteica , Especificidade por Substrato
14.
Appl Environ Microbiol ; 85(2)2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30446550

RESUMO

Sulfolobus solfataricus is an aerobic crenarchaeal hyperthermophile with optimum growth at temperatures greater than 80°C and pH 2 to 4. Within the crenarchaeal group of Sulfolobales, N-acetylglucosamine (GlcNAc) has been shown to be a component of exopolysaccharides, forming their biofilms, and of the N-glycan decorating some proteins. The metabolism of GlcNAc is still poorly understood in Archaea, and one approach to gaining additional information is through the identification and functional characterization of carbohydrate active enzymes (CAZymes) involved in the modification of GlcNAc. The screening of S. solfataricus extracts allowed the detection of a novel α-N-acetylglucosaminidase (α-GlcNAcase) activity, which has never been identified in Archaea Mass spectrometry analysis of the purified activity showed a protein encoded by the sso2901 gene. Interestingly, the purified recombinant enzyme, which was characterized in detail, revealed a novel de-N-acetylase activity specific for GlcNAc and derivatives. Thus, assays to identify an α-GlcNAcase found a GlcNAc de-N-acetylase instead. The α-GlcNAcase activity observed in S. solfataricus extracts did occur when SSO2901 was used in combination with an α-glucosidase. Furthermore, the inspection of the genomic context and the preliminary characterization of a putative glycosyltransferase immediately upstream of sso2901 (sso2900) suggest the involvement of these enzymes in the GlcNAc metabolism in S. solfataricusIMPORTANCE In this study, a preliminary screening of cellular extracts of S. solfataricus allowed the identification of an α-N-acetylglucosaminidase activity. However, the characterization of the corresponding recombinant enzyme revealed a novel GlcNAc de-N-acetylase, which, in cooperation with the α-glucosidase, catalyzed the hydrolysis of O-α-GlcNAc glycosides. In addition, we show that the product of a gene flanking the one encoding the de-N-acetylase is a putative glycosyltransferase, suggesting the involvement of the two enzymes in the metabolism of GlcNAc. The discovery and functional analysis of novel enzymatic activities involved in the modification of this essential sugar represent a powerful strategy to shed light on the physiology and metabolism of Archaea.


Assuntos
Acetilesterase/genética , Sulfolobus solfataricus/genética , Acetilesterase/metabolismo , Glicosídeos/química , Hidrólise , Especificidade por Substrato , Sulfolobus solfataricus/enzimologia
15.
Microb Cell Fact ; 16(1): 218, 2017 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-29183330

RESUMO

BACKGROUND: The Bacillus subtilis spore has long been used to display antigens and enzymes. Spore display can be accomplished by a recombinant and a non-recombinant approach, with the latter proved more efficient than the recombinant one. We used the non-recombinant approach to independently adsorb two thermophilic enzymes, GH10-XA, an endo-1,4-ß-xylanase (EC 3.2.1.8) from Alicyclobacillus acidocaldarius, and GH3-XT, a ß-xylosidase (EC 3.2.1.37) from Thermotoga thermarum. These enzymes catalyze, respectively, the endohydrolysis of (1-4)-ß-D-xylosidic linkages of xylans and the hydrolysis of (1-4)-ß-D-xylans to remove successive D-xylose residues from the non-reducing termini. RESULTS: We report that both purified enzymes were independently adsorbed on purified spores of B. subtilis. The adsorption was tight and both enzymes retained part of their specific activity. When spores displaying either GH10-XA or GH3-XT were mixed together, xylan was hydrolysed more efficiently than by a mixture of the two free, not spore-adsorbed, enzymes. The high total activity of the spore-bound enzymes is most likely due to a stabilization of the enzymes that, upon adsorption on the spore, remained active at the reaction conditions for longer than the free enzymes. Spore-adsorbed enzymes, collected after the two-step reaction and incubated with fresh substrate, were still active and able to continue xylan degradation. The recycling of the mixed spore-bound enzymes allowed a strong increase of xylan degradation. CONCLUSION: Our results indicate that the two-step degradation of xylans can be accomplished by mixing spores displaying either one of two required enzymes. The two-step process occurs more efficiently than with the two un-adsorbed, free enzymes and adsorbed spores can be reused for at least one other reaction round. The efficiency of the process, the reusability of the adsorbed enzymes, and the well documented robustness of spores of B. subtilis indicate the spore as a suitable platform to display enzymes for single as well as multi-step reactions.


Assuntos
Bacillus subtilis/metabolismo , Esporos Bacterianos/química , Esporos Bacterianos/metabolismo , Xilanos/metabolismo , Adsorção , Alicyclobacillus/enzimologia , Proteínas de Bactérias/metabolismo , Endo-1,4-beta-Xilanases/isolamento & purificação , Endo-1,4-beta-Xilanases/metabolismo , Hidrólise , Esporos Bacterianos/enzimologia
16.
J Med Chem ; 60(23): 9462-9469, 2017 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-29112434

RESUMO

The highly stereocontrolled de novo synthesis of l-NBDNJ (the unnatural enantiomer of the iminosugar drug Miglustat) and a preliminary evaluation of its chaperoning potential are herein reported. l-NBDNJ is able to enhance lysosomal α-glucosidase levels in Pompe disease fibroblasts, either when administered singularly or when coincubated with the recombinant human α-glucosidase. In addition, differently from its d-enantiomer, l-NBDNJ does not act as a glycosidase inhibitor.


Assuntos
1-Desoxinojirimicina/análogos & derivados , Ativação Enzimática/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Doença de Depósito de Glicogênio Tipo II/tratamento farmacológico , alfa-Glucosidases/metabolismo , 1-Desoxinojirimicina/síntese química , 1-Desoxinojirimicina/química , 1-Desoxinojirimicina/farmacologia , Regulação Alostérica/efeitos dos fármacos , Linhagem Celular , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Fibroblastos/enzimologia , Fibroblastos/metabolismo , Doença de Depósito de Glicogênio Tipo II/enzimologia , Doença de Depósito de Glicogênio Tipo II/metabolismo , Humanos , Lisossomos/efeitos dos fármacos , Lisossomos/enzimologia , Lisossomos/metabolismo , Modelos Moleculares , Estereoisomerismo
17.
Nat Commun ; 8(1): 1111, 2017 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-29061980

RESUMO

Pompe disease, a rare lysosomal storage disease caused by deficiency of the lysosomal acid α-glucosidase (GAA), is characterized by glycogen accumulation, triggering severe secondary cellular damage and resulting in progressive motor handicap and premature death. Numerous disease-causing mutations in the gaa gene have been reported, but the structural effects of the pathological variants were unknown. Here we present the high-resolution crystal structures of recombinant human GAA (rhGAA), the standard care of Pompe disease. These structures portray the unbound form of rhGAA and complexes thereof with active site-directed inhibitors, providing insight into substrate recognition and the molecular framework for the rationalization of the deleterious effects of disease-causing mutations. Furthermore, we report the structure of rhGAA in complex with the allosteric pharmacological chaperone N-acetylcysteine, which reveals the stabilizing function of this chaperone at the structural level.


Assuntos
Doença de Depósito de Glicogênio Tipo II/enzimologia , alfa-Glucosidases/química , Acetilcisteína/química , Acetilcisteína/metabolismo , Domínio Catalítico , Doença de Depósito de Glicogênio Tipo II/genética , Humanos , Lisossomos/química , Lisossomos/enzimologia , Lisossomos/genética , Modelos Moleculares , Conformação Proteica , alfa-Glucosidases/genética , alfa-Glucosidases/metabolismo
18.
Oncotarget ; 8(16): 27075-27092, 2017 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-28404918

RESUMO

Glycans containing α-L-fucose participate in diverse interactions between cells and extracellular matrix. High glycan expression on cell surface is often associated with neoplastic progression. The lysosomal exoenzyme, α-L-fucosidase-1 (FUCA-1) removes fucose residues from glycans. The FUCA-1 gene is down-regulated in highly aggressive and metastatic human tumors. However, the role of FUCA-1 in tumor progression remains unclear. It is speculated that its inactivation perturbs glycosylation of proteins involved in cell adhesion and promotes cancer. FUCA-1 expression of various thyroid normal and cancer tissues assayed by immunohistochemical (IHC) staining was high in normal thyroids and papillary thyroid carcinomas (PTC), whereas it progressively decreased in poorly differentiated, metastatic and anaplastic thyroid carcinomas (ATC). FUCA-1 mRNA expression from tissue samples and cell lines and protein expression levels and enzyme activity in thyroid cancer cell lines paralleled those of IHC staining. Furthermore, ATC-derived 8505C cells adhesion to human E-selectin and HUVEC cells was inhibited by bovine α-L-fucosidase or Lewis antigens, thus pointing to an essential role of fucose residues in the adhesive phenotype of this cancer cell line. Finally, 8505C cells transfected with a FUCA-1 containing plasmid displayed a less invasive phenotype versus the parental 8505C. These results demonstrate that FUCA-1 is down-regulated in ATC compared to PTC and normal thyroid tissues and cell lines. As shown for other human cancers, the down-regulation of FUCA-1 correlates with increased aggressiveness of the cancer type. This is the first report indicating that the down-regulation of FUCA-1 is related to the increased aggressiveness of thyroid cancer.


Assuntos
Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/patologia , alfa-L-Fucosidase/genética , Anaplasia , Animais , Bovinos , Adesão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular , Selectina E/metabolismo , Ativação Enzimática , Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Inativação Gênica , Humanos , Imuno-Histoquímica , Invasividade Neoplásica , Metástase Neoplásica , Ligação Proteica , alfa-L-Fucosidase/metabolismo , alfa-L-Fucosidase/farmacologia
19.
Glycobiology ; 27(5): 425-437, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28158578

RESUMO

Chemo-enzymatic synthesis of oligosaccharides exploits the diversity of glycosidases and their ability to promote transglycosylation reactions in parallel with hydrolysis. Methods to increase the transglycosylation/hydrolysis ratio include site-directed mutagenesis and medium modification. The former approach was successful in several cases and has provided the best synthetic yields with glycosynthases-mutants at the catalytic nucleophile position that promote transglycosylation with high efficiency, but do not hydrolyze the oligosaccharide products. Several glycosidases have proven recalcitrant to this conversion, thus alternative methods to increase the transglycosylation/hydrolysis ratio by mutation would be very useful. Here we show that a mutant of a ß-galactosidase from Alicyclobacillus acidocaldarius in an invariant residue in the active site of the enzymes of this family (glutamic acid 361) carries out efficient transglycosylation reactions on different acceptors only in the presence of external ions with yields up to 177-fold higher than that of the wild type. This is the first case in which sodium azide and sodium formate in combination with site-directed mutagenesis have been used to introduce transglycosylation activity into a glycosidase. These observations will hopefully guide further efforts to generate useful synthases.


Assuntos
Alicyclobacillus/enzimologia , Glicosilação , Oligossacarídeos/química , beta-Galactosidase/química , Alicyclobacillus/genética , Substituição de Aminoácidos , Catálise , Domínio Catalítico , Hidrólise , Cinética , Mutação , Oligossacarídeos/biossíntese , Especificidade por Substrato , beta-Galactosidase/genética
20.
Biotechnol Biofuels ; 9: 154, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27453729

RESUMO

BACKGROUND: Biofuels production from plant biomasses is a complex multi-step process with important economic burdens. Several biotechnological approaches have been pursued to reduce biofuels production costs. The aim of the present study was to explore the production in tobacco plastome of three genes encoding (hemi)cellulolytic enzymes from thermophilic and hyperthermophilic bacterium and Archaea, respectively, and test their application in the bioconversion of an important industrially pretreated biomass feedstock (A. donax) for production of second-generation biofuels. RESULTS: The selected enzymes, endoglucanase, endo-ß-1,4-xylanase and ß-glucosidase, were expressed in tobacco plastome with a protein yield range from 2 % to more than 75 % of total soluble proteins (TSP). The accumulation of endoglucanase (up to 2 % TSP) gave altered plant phenotypes whose severity was directly linked to the enzyme yield. The most severe seedling-lethal phenotype was due to the impairment of plastid development associated to the binding of endoglucanase protein to thylakoids. Endo-ß-1,4-xylanase and ß-glucosidase, produced at very high level without detrimental effects on plant development, were enriched (fourfold) by heat treatment (105.4 and 255.4 U/mg, respectively). Both plastid-derived biocatalysts retained the main features of the native or recombinantly expressed enzymes with interesting differences. Plastid-derived xylanase and ß-glucosidase resulted more thermophilic than the E. coli recombinant and native counterpart, respectively. Bioconversion experiments, carried out at 50 and 60 °C, demonstrated that plastid-derived enzymes were able to hydrolyse an industrially pretreated giant reed biomass. In particular, the replacement of commercial enzyme with plastid-derived xylanase, at 60 °C, produced an increase of both xylose recovery and hydrolysis rate; whereas the replacement of both xylanase and ß-glucosidase produced glucose levels similar to those observed with the commercial cocktails, and xylose yields always higher in the whole 24-72 h range. CONCLUSIONS: The very high production level of thermophilic and hyperthermophilic enzymes, their stability and bioconversion efficiencies described in this study demonstrate that plastid transformation represents a real cost-effective production platform for cellulolytic enzymes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...