Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Tree Physiol ; 42(10): 2116-2132, 2022 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-35640151

RESUMO

Flood tolerance is crucial to the survival of tree species subject to long periods of flooding, such as those present in the Amazonian várzea. Tolerance can be mediated by adjustments of metabolism, physiology and morphology, reinforcing the need to investigate the physiological and biochemical mechanisms used by tropical tree species to survive this stress. Moreover, such mechanisms may vary between populations that are subjected to differences in the frequency of flooding events. Here, we aimed to identify the mechanisms used by two populations of the tropical tree Guazuma ulmifolia (Lam.) to tolerate flooding: an Amazonian population frequently exposed to flooding and a Cerrado population, adapted to a dry environment. Young plants were subjected to a flooding of the roots and lower stem for 32 days, followed by 17 days of recovery. Amazonian plants exhibited greater increases in shoot length and higher maximum photosynthetic rate (Amax) compared with non-flooded plants from 7 days of flooding onwards, whereas increased Amax occurred later in flooded Cerrado plants and was not accompanied by increased shoot length. Lactate accumulated in roots of Cerrado plants after 24 h flooding, together with transcripts coding for lactate dehydrogenase in roots of both Cerrado and Amazonian plants. After 7 days of flooding, lactate decreased and alcohol dehydrogenase activity increased transiently, together with concentrations of alanine, γ-aminobutyric acid and succinate, indicating activation of metabolic processes associated with low oxygen availability. Other amino acids also increased in flooded Cerrado plants, revealing more extensive metabolic changes than in Amazonian plants. Wetland and dryland populations of G. ulmifolia revealed the great capacity to tolerate flooding stress through a suite of alterations in photosynthetic gas exchange and metabolism. However, the integrated physiological, biochemical and molecular analyses realized here indicated that wetland plants acclimatized more efficiently with increased shoot elongation and more rapid restoration of normal metabolism.


Assuntos
Álcool Desidrogenase , Malvaceae , Alanina , Aminoácidos , Inundações , Pradaria , Lactato Desidrogenases , Lactatos , Oxigênio , Succinatos , Árvores/fisiologia , Ácido gama-Aminobutírico
2.
J Proteomics ; 187: 182-199, 2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-30056254

RESUMO

Fever is a brain-mediated increase in body temperature mainly during inflammatory or infectious challenges. Although there is considerable data regarding the inflammation pathways involved in fever, metabolic alterations necessary to orchestrate the complex inflammatory response are not totally understood. We performed proteomic analysis of rat hypothalamus using label-free LC-MS/MS in a model of fever induced by lipopolysaccharide (LPS) or prostaglandin E2 (PGE2). In total, 7021 proteins were identified. As far as we know, this is the largest rat hypothalamus proteome dataset available to date. Pathway analysis showed proteins from both stimuli associated with inflammatory and metabolic pathways. Concerning metabolic pathways, rats exposed to LPS or PGE2 presented lower relative abundance of proteins involved in glycolysis, pentose phosphate pathway and tricarboxylic acid cycle. Mitochondrial function may also be altered by both stimuli because significant downregulation of several proteins was found, mainly in complexes I and IV. LPS was able to induce downregulation of important proteins in the enzymatic antioxidant system, thereby contributing to oxidative stress. The results offered comprehensive information about fever responses and helped to reveal new insights into proteins potentially involved in inflammatory signaling and metabolic changes in the hypothalamus during systemic LPS and central PGE2 administration. SIGNIFICANCE: The evolutionary persistence of fever, despite the elevated cost for maintenance of this response, suggests that elevation in core temperature may represent an interesting strategy for survival. Fever response is achieved through the integrated behavioral, physiological, immunological and biochemical processes that determine the balance between heat generation and elimination. The development of such complex response arouses interest in studying how the cell metabolism responds or even contributes to promote fever. Our results offered comprehensive information about fever responses, including metabolic and inflammatory pathways, providing new insights into candidate proteins potentially involved in inflammatory signaling and metabolic changes in the hypothalamus during fever induced by systemic LPS and central PGE2 perturbation.


Assuntos
Dinoprostona , Febre/induzido quimicamente , Febre/metabolismo , Hipotálamo/metabolismo , Lipopolissacarídeos , Proteômica/métodos , Animais , Cromatografia Líquida , Febre/patologia , Hipotálamo/patologia , Inflamação/induzido quimicamente , Inflamação/metabolismo , Inflamação/patologia , Masculino , Proteoma/análise , Proteoma/efeitos dos fármacos , Proteoma/metabolismo , Ratos , Ratos Wistar , Coloração e Rotulagem , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...