Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Biosyst ; 11(2): 379-83, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25333203

RESUMO

Here we propose the optimization of a rapid and reproducible protocol for intracellular metabolite extraction from yeast cells and their metabolic profiling by (1)H-NMR spectroscopy. The protocol reliability has been validated through comparison between the metabolome of cells in different phases of growth or with different genetic backgrounds.


Assuntos
Metabolômica/métodos , Espectroscopia de Prótons por Ressonância Magnética/métodos , Saccharomycetales/metabolismo , Metaboloma , Saccharomycetales/citologia , Saccharomycetales/crescimento & desenvolvimento
2.
Biochim Biophys Acta ; 1802(7-8): 583-92, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20347968

RESUMO

In the present work we show that murine ATXN3 (ATXN3Q6) nuclear uptake is promoted by phosphorylation on serine 29, a highly conserved residue inside the Josephin domain. Both casein kinase 2 (CK2) and glycogen synthase kinase 3 (GSK3) are able to carry out phosphorylation on this residue. S29 phosphorylation was initially assessed in vitro on purified ATXN3Q6, and subsequently confirmed in transfected COS-7 cells, by MS analysis. Site-directed mutagenesis of S29 to an alanine was shown to strongly reduce nuclear uptake, in COS-7 transiently transfected cells overexpressing ATXN3Q6, while substitution with phospho-mimic aspartic acid restored the wild-type phenotype. Finally, treatment with CK2 and GSK3 inhibitors prevented S29 phosphorylation and strongly inhibited nuclear uptake, showing that both kinases are involved in ATXN3Q6 subcellular sorting. Although other authors have previously addressed this issue, we show for the first time that ATXN3 is phosphorylated inside the Josephin domain and that S29 phosphorylation is involved in nuclear uptake of ATXN3.


Assuntos
Caseína Quinase II/metabolismo , Núcleo Celular/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Proteínas Nucleares/metabolismo , Serina/metabolismo , Fatores de Transcrição/metabolismo , Transporte Ativo do Núcleo Celular/genética , Sequência de Aminoácidos , Animais , Ataxina-3 , Células COS , Caseína Quinase II/fisiologia , Células Cultivadas , Chlorocebus aethiops , Quinase 3 da Glicogênio Sintase/fisiologia , Humanos , Camundongos , Dados de Sequência Molecular , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/genética , Fosforilação/fisiologia , Homologia de Sequência de Aminoácidos , Fatores de Transcrição/química , Fatores de Transcrição/genética
3.
Cell Biochem Funct ; 19(4): 229-35, 2001 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-11746203

RESUMO

3-Nitrocoumarin is described in the literature as a specific inhibitor of mammalian phospholipase-C and here we studied the effect of 3-nitrocoumarin on budding yeast phosphatidylinositol-specific phospholipase-C and its effect on yeast growth. 3-Nitrocoumarin is a powerful inhibitor in vitro of the yeast Plc1 protein with an IC(50) of 57 nM and it is also an inhibitor of yeast growth in minimal media at comparable concentrations. Moreover at the same concentration it inhibits the glucose-induced PI-turnover. Since the effects of 3-nitrocoumarin on yeast growth are superimposable on the growth phenotype caused by PLC1 gene deletion we can conclude that 3-nitrocoumarin is a specific and selective inhibitor of yeast phospholipase-C. In addition we show that 3-nitrocoumarin was also an effective inhibitor of the pathogenic yeast Candida albicans.


Assuntos
Cumarínicos/farmacologia , Inibidores Enzimáticos/farmacologia , Nitrocompostos/farmacologia , Saccharomyces cerevisiae/efeitos dos fármacos , Fosfolipases Tipo C/antagonistas & inibidores , Candida albicans/efeitos dos fármacos , Candida albicans/fisiologia , Cumarínicos/química , Glucose/metabolismo , Humanos , Fosfatidilinositóis/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Fosfolipases Tipo C/genética , Fosfolipases Tipo C/metabolismo
4.
Biochim Biophys Acta ; 1538(2-3): 181-9, 2001 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-11336789

RESUMO

The CDC25 gene product is a guanine nucleotide exchange factor for Ras proteins in yeast. Recently it has been suggested that the intracellular levels of guanine nucleotides may influence the exchange reaction. To test this hypothesis we measured the levels of nucleotides in yeast cells under different growth conditions and the relative amount of Ras2-GTP. The intracellular GTP/GDP ratio was found to be very sensitive to growth conditions: the ratio is high, close to that of ATP/ADP during exponential growth, but it decreases rapidly before the beginning of stationary phase, and it drops further under starvation conditions. The addition of glucose to glucose-starved cells causes a fast increase of the GTP/GDP ratio. The relative amount of Ras2-GTP changes in a parallel way suggesting that there is a correlation with the cytosolic GTP/GDP ratio. In addition 'in vitro' mixed-nucleotide exchange experiments done on purified Ras2 protein demonstrated that the GTP and GDP concentrations influence the extent of Ras2-GTP loading giving further support to their possible regulatory role.


Assuntos
Proteínas Fúngicas/metabolismo , Nucleotídeos de Guanina/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Proteínas ras/metabolismo , Citosol/metabolismo , Glucose/farmacologia , Guanosina Difosfato/análise , Guanosina Difosfato/química , Guanosina Trifosfato/análise , Guanosina Trifosfato/química , Saccharomyces cerevisiae/crescimento & desenvolvimento , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima , Proteínas ras/química
5.
Biochem J ; 351(Pt 1): 143-50, 2000 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-10998356

RESUMO

The CDK (cyclin-dependent kinase) family of enzymes is required for the G(1)-to-S-phase and G(2)-to-M-phase transitions during the cell-division cycle of eukaryotes. We have shown previously that the protein kinase CKII catalyses the phosphorylation of Ser-39 in Cdc2 during the G(1) phase of the HeLa cell-division cycle [Russo, Vandenberg, Yu, Bae, Franza and Marshak (1992) J. Biol. Chem. 267, 20317-20325]. To identify a functional role for this phosphorylation, we have studied the homologous enzymes in the budding yeast Saccharomyces cerevisiae. The S. cerevisiae homologue of Cdc2, Cdc28, contains a consensus CKII site (Ser-46), which is homologous with that of human Cdc2. Using in vitro kinase assays, metabolic labelling, peptide mapping and phosphoamino acid analysis, we demonstrate that this site is phosphorylated in Cdc28 in vivo as well in vitro. In addition, S. cerevisiae cells in which Ser-46 has been mutated to alanine show a decrease in both cell volume and protein content of 33%, and this effect is most pronounced in the stationary phase. Because cell size in S. cerevisiae is regulated primarily at the G(1) stage, we suggest that CKII contributes to the regulation of the cell cycle in budding yeast by phosphorylation of Cdc28 as a checkpoint for G(1) progression.


Assuntos
Proteína Quinase CDC28 de Saccharomyces cerevisiae/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/enzimologia , Sequência de Aminoácidos , Substituição de Aminoácidos/genética , Western Blotting , Proteína Quinase CDC28 de Saccharomyces cerevisiae/química , Proteína Quinase CDC28 de Saccharomyces cerevisiae/genética , Caseína Quinase II , Divisão Celular , Citometria de Fluxo , Dados de Sequência Molecular , Mutação/genética , Mapeamento de Peptídeos , Fosforilação/efeitos dos fármacos , Fosfosserina/análise , Fosfosserina/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Alinhamento de Sequência
6.
Int J Biochem Cell Biol ; 32(2): 215-24, 2000 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-10687955

RESUMO

The CDC25 gene product is an exchange factor for Ras proteins and it activates the Ras/cAMP pathway in the yeast Saccharomyces cerevisiae. The overexpression of the CDC25 gene in S. cerevisiae cells causes a partial glucose-derepressed phenotype which is particularly evident for expression of invertase. To define domains of Cdc25 protein relevant for this derepression and to test another glucose repressed system, different to invertase, we have overexpressed different regions of the CDC25 gene under the control of a GAL-promoter. We found that a derepression of both GAL regulated promoters and invertase was related to the overexpression of CDC25 regions that contain a functional guanine nucleotide exchange (GEF) domain. The effect on GAL-promoters was particular evident when the CDC25 gene was under the control of a UASgal element and operates at transcriptional level, although a moderate derepression was found also for UASgal/lacZ reporter gene. Finally, the overexpression of the GEF domain of CDC25 also caused an increase in the expression of the GAL4 regulatory gene, while a constitutive activation of the Ras/cAMP pathway did not produce any increase in GAL4 expression. These findings indicate that the overexpression of the catalytic domain of CDC25 gene is necessary and sufficient to give a glucose-derepression of GAL promoters and of invertase. They also suggest that the derepression of GAL promoters occurs through an increase of GAL4 expression in a Ras cAMP independent way.


Assuntos
Proteínas de Ciclo Celular/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Genes Fúngicos , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , ras-GRF1/genética , Proteínas de Ligação a DNA , Galactose/metabolismo , Galactose/farmacologia , Expressão Gênica/efeitos dos fármacos , Genes Reporter , Glucose/metabolismo , Glucose/farmacologia , Glicosídeo Hidrolases/metabolismo , Óperon Lac , Regiões Promotoras Genéticas/efeitos dos fármacos , RNA Fúngico/genética , RNA Fúngico/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , beta-Frutofuranosidase
7.
Biochim Biophys Acta ; 1405(1-3): 147-54, 1998 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-9784626

RESUMO

Addition of glucose to glucose-deprived cells of the yeast Saccharomyces cerevisiae triggers rapid turnover of phosphatidylinositol, phosphatidylinositol-phosphate and phosphatidylinositol 4,5-bisphosphate. Glucose stimulation of PI turnover was measured both as an increase in the specific ratio of 32P-labeling and as an increase in the level of diacylglycerol after addition of glucose. Glucose also causes rapid activation of plasma membrane H+-ATPase. We show that in a mutant lacking the PLC1 encoded phospholipase C, both processes were strongly reduced. Compound 48/80, a known inhibitor of mammalian phospholipase C, inhibits both processes. However, activation of the plasma membrane H+-ATPase is only inhibited by concentrations of compound 48/80 that strongly inhibit phospholipid turnover. Growth was inhibited by even lower concentrations. Our data suggest that in yeast cells, glucose triggers through activation of the PLC1 gene product a signaling pathway initiated by phosphatidylinositol turnover and involved in activation of the plasma membrane H+-ATPase.


Assuntos
Genes Fúngicos , Glucose/farmacologia , Fosfatidilinositóis/metabolismo , ATPases Translocadoras de Prótons/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Fosfolipases Tipo C/genética , Fosfolipases Tipo C/metabolismo , Divisão Celular/efeitos dos fármacos , Membrana Celular/enzimologia , Diglicerídeos/biossíntese , Ativação Enzimática/efeitos dos fármacos , Glucose/metabolismo , Concentração de Íons de Hidrogênio , Cinética , Saccharomyces cerevisiae/efeitos dos fármacos , Transdução de Sinais , p-Metoxi-N-metilfenetilamina/farmacologia
8.
Biochim Biophys Acta ; 1383(2): 292-300, 1998 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-9602157

RESUMO

The minimal active domain (GEF domain) of the mouse Ras exchange factor CDC25Mm was purified to homogeneity from recombinant Escherichia coli culture. The 256 amino acids polypeptide shows high activity in vitro and forms a stable complex with H-ras p21 in absence of guanine nucleotides. Circular dichroism (CD) spectra in the far UV region indicate that this domain is highly structured with a high content of alpha-helix (42%). Near UV CD spectra evidenced good signal due to phenylalanine and tyrosine while a poor contribution was elicited by the three tryptophan residues contained in this domain. The tryptophan fluorescence signal was scarcely affected by denaturation of the protein or by formation of the binary complex with H-ras p21, suggesting that the Trp residues, which are well conserved in the GEF domain of several Ras-exchange factors, were exposed to the surface of the protein and they are not most probably directly involved in the interaction with Ras proteins.


Assuntos
Proteínas de Ciclo Celular/química , Fosfoproteínas Fosfatases/química , Estrutura Secundária de Proteína , Proteínas ras/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Dicroísmo Circular , Escherichia coli , Camundongos , Dados de Sequência Molecular , Fosfoproteínas Fosfatases/genética , Fosfoproteínas Fosfatases/metabolismo , Alinhamento de Sequência , ras-GRF1
9.
Biochem Biophys Res Commun ; 206(1): 253-9, 1995 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-7818528

RESUMO

The minimal active domain of the mouse CDC25Mm, a GDP/GTP exchange factor (GEF) active on H-ras protein, was determined by constructing several deletion mutants of the C-terminal domain of the protein. The functional activity of these fragments was analyzed for the ability to complement the yeast temperature sensitive mutation cdc25-1 and to catalyze the GDP/GTP exchange on Ras proteins in vitro. A C-terminal domain of 256 residues (CDC25Mm 1005-1260) was sufficient for full biological activity in vivo. Deletion of 27 C-terminal amino acids (CDC25Mm 1005-1233) abolished the complementing activity while deletion of 25 N-terminal residues (CDC25Mm 1030-1260 corresponding to the most conserved domain) led to a complete loss of expression. The results in vivo were supported by experiments in vitro. Highly purified CDC25Mm 1005-1260, expressed in E. coli using the pMAL system, enhanced the GDP release from both H-ras p21 and S. cerevisiae Ras2p and its activity was nearly as high as that of CDC25Mm 974-1260. Comparison with the Cdc25p protein yielded further evidence that the minimal active domain of CDC25Mm is shorter than the yeast one.


Assuntos
Proteínas de Ciclo Celular , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Proteínas/química , Saccharomyces cerevisiae/metabolismo , ras-GRF1 , Animais , Proteínas Fúngicas/biossíntese , Deleção de Genes , Teste de Complementação Genética , Fatores de Troca do Nucleotídeo Guanina , Guanosina Difosfato/metabolismo , Cinética , Camundongos , Mutagênese , Plasmídeos , Reação em Cadeia da Polimerase , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Mapeamento por Restrição , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae , Relação Estrutura-Atividade , Fatores ras de Troca de Nucleotídeo Guanina
10.
Mol Microbiol ; 8(5): 927-43, 1993 May.
Artigo em Inglês | MEDLINE | ID: mdl-8355617

RESUMO

Cells of the yeast Saccharomyces cerevisiae display a wide range of glucose-induced regulatory phenomena, including glucose-induced activation of the RAS-adenylate cyclase pathway and phosphatidylinositol turnover, rapid post-translational effects on the activity of different enzymes as well as long-term effects at the transcriptional level. A gene called GGS1 (for General Glucose Sensor) that is apparently required for the glucose-induced regulatory effects and several ggs1 alleles (fdp1, byp1 and cif1) has been cloned and characterized. A GGS1 homologue is present in Methanobacterium thermoautotrophicum. Yeast ggs1 mutants are unable to grow on glucose or related readily fermentable sugars, apparently owing to unrestricted influx of sugar into glycolysis, resulting in its rapid deregulation. Levels of intracellular free glucose and metabolites measured over a period of a few minutes after addition of glucose to cells of a ggs1 delta strain are consistent with our previous suggestion of a functional interaction between a sugar transporter, a sugar kinase and the GGS1 gene product. Such a glucose-sensing system might both restrict the influx of glucose and activate several signal transduction pathways, leading to the wide range of glucose-induced regulatory phenomena. Deregulation of these pathways in ggs1 mutants might explain phenotypic defects observed in the absence of glucose, e.g. the inability of ggs1 diploids to sporulate.


Assuntos
Regulação Fúngica da Expressão Gênica , Genes Fúngicos , Genes Reguladores , Glucose/metabolismo , Glucosiltransferases/genética , Saccharomyces cerevisiae/genética , Transdução de Sinais/genética , Alelos , Sequência de Aminoácidos , Sequência de Bases , Clonagem Molecular , Indução Enzimática/efeitos dos fármacos , Deleção de Genes , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Genes Supressores , Glucose/farmacologia , Glucosiltransferases/metabolismo , Glicólise/genética , Glicosídeo Hidrolases/biossíntese , Hexoquinase/metabolismo , Methanobacterium/genética , Dados de Sequência Molecular , Fases de Leitura Aberta , Fenótipo , Saccharomyces cerevisiae/fisiologia , Homologia de Sequência do Ácido Nucleico , alfa-Glucosidases/biossíntese , beta-Frutofuranosidase
11.
EMBO J ; 11(6): 2151-7, 1992 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-1376246

RESUMO

In the yeast Saccharomyces cerevisiae genetic and biochemical evidence indicates that the product of the CDC25 gene activates the RAS/adenylyl cyclase/protein kinase A pathway by acting as a guanine nucleotide protein. Here we report the isolation of a mouse brain cDNA homologous to CDC25. The mouse cDNA, called CDC25Mm, complements specifically point mutations and deletion/disruptions of the CDC25 gene. In addition, it restores the cAMP levels and CDC25-dependent glucose-induced cAMP signalling in a yeast strain bearing a disruption of the CDC25 gene. The CDC25Mm-encoded protein is 34% identical with the catalytic carboxy terminal part of the CDC25 protein and shares significant homology with other proteins belonging to the same family. The protein encoded by CDC25Mm, prepared as a glutathione S-transferase fusion in Escherichia coli cells, activates adenylyl cyclase in yeast membranes in a RAS2-dependent manner. Northern blot analysis of mouse brain poly(A)+ RNA reveals two major transcripts of approximately 1700 and 5200 nucleotides. Transcripts were found also in mouse heart and at a lower level in liver and spleen.


Assuntos
Adenilil Ciclases/metabolismo , Proteínas de Ciclo Celular , DNA/genética , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Proteínas ras , ras-GRF1 , Sequência de Aminoácidos , Animais , Sequência de Bases , Northern Blotting , Clonagem Molecular , AMP Cíclico/metabolismo , DNA Fúngico/genética , Ativação Enzimática , Escherichia coli/genética , Proteínas Fúngicas/isolamento & purificação , Proteínas Fúngicas/metabolismo , Proteínas de Ligação ao GTP/genética , Teste de Complementação Genética , Genótipo , Glucose/farmacologia , Glutationa Transferase/genética , Glutationa Transferase/isolamento & purificação , Glutationa Transferase/metabolismo , Camundongos , Dados de Sequência Molecular , Plasmídeos , Poli A/genética , Poli A/isolamento & purificação , RNA/genética , RNA/isolamento & purificação , RNA Mensageiro , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/metabolismo , Homologia de Sequência do Ácido Nucleico
12.
Biochim Biophys Acta ; 1089(2): 206-12, 1991 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-1647210

RESUMO

The CDC25 gene is transcribed at a very low level in S. cerevisiae cells. We have studied the effects of an overexpression of this regulatory gene by cloning either the whole CDC25 open reading frame (pIND25-2 plasmid) or its 3' terminal portion (pIND25-1 plasmid) under the control of the inducible strong GAL promoter. The strain transformed with pIND25-2 produced high levels of CDC25 specific mRNA, induced by galactose. This strain does not show any apparent alteration of growth, both in glucose and in galactose. Instead the yeast cells transformed with pIND25-1, that overexpress the 3' terminal part of CDC25 gene, grow very slowly in galactose medium, while they grow normally in glucose medium. The nucleotides were extracted from transformed cells, separated by HPLC and quantitated. The ATP/ADP and GTP/GDP ratios were almost identical in control and in pIND25-2 transformed strains growing in glucose and in galactose, while the strain that overexpresses the 3' terminal portion of CDC25 gene showed a decrease of ATP/ADP ratio and a partial depletion of the GTP pool. The disruption of RAS genes was only partially able to 'cure' this phenotype. A ras2-ts1, ras1::URA3 strain, transformed with pIND25-1 plasmid, was able to grow in galactose at 36 degrees C. These results suggest that the carboxy-terminal domain of the CDC25 protein could stimulate an highly unregulated GTPase activity in yeast cells by interacting not only with RAS gene products but also with some other yeast G-proteins.


Assuntos
Proteínas de Ciclo Celular , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Genes Fúngicos , Nucleotídeos de Purina/metabolismo , Saccharomyces cerevisiae/genética , ras-GRF1 , Cromatografia Líquida de Alta Pressão , AMP Cíclico/análise , Genes Reguladores , Genes ras , Fases de Leitura Aberta , Fenótipo , Plasmídeos , Mapeamento por Restrição , Transcrição Gênica , Transformação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...