Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 14(24): 16661-16677, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38784421

RESUMO

This study explores the iodine and nickel-doped cobalt hydroxide (I & Ni-co-doped-Co(OH)2) as a potential material for energy storage and conversion applications owing to its excellent electrochemical characteristics. According to our analysis, it was revealed that this material exhibits pseudocapacitive-like behavior, as evident from distinct redox peaks observed in cyclic voltammetry, which confirms its ability to store charges. The diffusion coefficient analysis reveals that this material possesses conductivity and rapid diffusion kinetics, making it particularly advantageous compared to materials synthesized in previous studies. Charge-discharge measurements were performed to analyze the charge storage capacity and stability of this material after 3000 consecutive cycles, showing its excellent stability with minimum loss of capacitance. Furthermore, its anodic and cathodic linear sweep voltammetry curves were measured to evaluate its oxygen evolution and hydrogen evolution reaction performance. The results showed that the material exhibited an excellent water splitting performance, which suggests its potential practical application for hydrogen production. This increased activity was attributed to the doping of α-Co(OH)2, which improved its structural stability, electrical conductivity, and charge transfer efficiency. Thus, I & Ni-co-doped-Co(OH)2 possesses enhanced properties that make it an excellent material for both energy storage and hydrogen generation applications.

2.
Dalton Trans ; 53(19): 8177-8190, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38683625

RESUMO

Exploring new strategies to design non-precious and efficient electrocatalysts can provide a solution for sluggish electrocatalytic kinetics and sustainable hydrogen energy. Transition metal selenides are potential contenders for bifunctional electrocatalysis owing to their unique layered structure, low band gap, and high intrinsic activities. However, insufficient access to active sites, lethargic water dissociation, and structural degradation of active materials during electrochemical reactions limit their activities, especially in alkaline media. In this article, we report a useful strategy to assemble vanadium diselenide (VSe2) into a 3D MXene/rGO-based sponge-like architecture (VSe2@G/MXe) using hydrothermal and freeze-drying approaches. The 3D hierarchical meso/macro-pore rich sponge-like morphology not only prevents aggregation of VSe2 nanosheets but also offers a kinetics-favorable framework and high robustness to the electrocatalyst. Synergistic coupling of VSe2 and a MXene/rGO matrix yields a heterostructure with a large specific surface area, high conductivity, and multi-dimensional anisotropic pore channels for uninterrupted mass transport and gas diffusion. Consequently, VSe2@G/MXe presented superior electrochemical activity for both the HER and OER compared to its counterparts (VSe2 and VSe2@G), in alkaline media. The overpotentials required to reach a cathodic and anodic current density of 10 mA cm-2 were 153 mV (Tafel slope = 84 mV dec-1) and 241 mV (Tafel slope = 87 mV dec-1), respectively. The Rct values at the open circuit voltage were as low as 9.1 Ω and 1.41 Ω for the HER and OER activity, respectively. Importantly, VSe2@G/MXe withstands a steady current output for a long 24 h operating time. Hence, this work presents a rational design for 3D microstructures with optimum characteristics for efficient bifunctional alkaline water-splitting.

3.
RSC Adv ; 14(5): 2947-2960, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38239454

RESUMO

Halloysite nanotubes (HNTs) were surface functionalized using four distinct chemical moieties (amidoxime, hydrazone, ethylenediamine (EDA), and diethylenetriamine (DETA)), producing modified HNTs (H1-H4) capable of binding with Cr(vi) ions. Advanced techniques like FTIR, XRD, SEM, and EDX provided evidence of the successful functionalization of these HNTs. Notably, the functionalization occurred on the surface of HNTs, rather than within the interlayer or lumen. These decorated HNTs were effective in capturing Cr(vi) ions at optimized sorption parameters, with adsorption rates ranging between 58-94%, as confirmed by atomic absorption spectroscopy (AAS). The mechanism of adsorption was further scrutinized through the Freundlich and Langmuir isotherms. Langmuir isotherms revealed the nearest fit to the data suggesting the monolayer adsorption of Cr(vi) ions onto the nanotubes, indicating a favorable adsorption process. It was hypothesized that Cr(vi) ions are primarily attracted to the amine groups on the modified nanotubes. Quantum chemical calculations further revealed that HNTs functionalized with hydrazone structures (H2) demonstrated a higher affinity (interaction energy -26.33 kcal mol-1) for the Cr(vi) ions. This can be explained by the formation of stronger hydrogen bonds with the NH moieties of the hydrazone moiety, than those established by the OH of oxime (H1) and longer amine chains (H3 and H4), respectively. Overall, the findings suggest that these decorated HNTs could serve as an effective and cost-efficient solution for treating water pollution.

4.
RSC Adv ; 13(38): 26822-26838, 2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37681040

RESUMO

In this work, we studied the effect of iron (Fe) and vanadium (V) co-doping (Fe/V), and graphitic carbon nitride (g-C3N4) on the performance of tungsten oxide (WO3) based electrodes for supercapacitor applications. The lone pair of electrons on nitrogen can improve the surface polarity of the g-C3N4 electrode material, which may results in multiple binding sites on the surface of electrode for interaction with electrolyte ions. As electrolyte ions interact with g-C3N4, they quickly become entangled with FeV-WO3 nanostructures, and the contact between the electrolyte and the working electrode is strengthened. Herein, FeV-WO3@g-C3N4 is fabricated by a wet chemical approach along with pure WO3 and FeV-WO3. All of the prepared samples i.e., WO3, FeV-WO3, and FeV-WO3@g-C3N4 were characterized by XRD, FTIR, EDS, FESEM, XPS, Raman, and BET techniques. Electrochemical performance is evaluated by cyclic voltammetry (CV), galvanic charge/discharge (GCD), and electrochemical impedance spectroscopy (EIS). It is concluded from electrochemical studies that FeV-WO3@g-C3N4 exhibits the highest electrochemical performance with specific capacitance of 1033.68 F g-1 at scan rate 5 mV s-1 in the potential window range from -0.8 to 0.25 V, that is greater than that for WO3 (422.76 F g-1) and FeV-WO3 (669.76 F g-1). FeV-WO3@g-C3N4 has the highest discharge time (867 s) that shows it has greater storage capacity, and its coulombic efficiency is 96.7%, which is greater than that for WO3 (80.1%) and FeV-WO3 (92.1%), respectively. Furthermore, excellent stability up to 2000 cycles is observed in FeV-WO3@g-C3N4. It is revealed from EIS measurements that equivalent series resistance and charge transfer values calculated for FeV-WO3@g-C3N4 are 1.82 Ω and 0.65 Ω, respectively.

5.
ACS Appl Mater Interfaces ; 14(41): 46912-46919, 2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36201621

RESUMO

Here, we spearhead a new approach to biopolymer impact modification that demonstrates superior performance while maintaining greater than 99% compostability. Using soybean-based monomers, a virtually untapped resource in terms of commercial volume and overall cost, a series of hyperbranched block copolymers were synthesized and melt-processed with poly(l-lactide) (PLA) to yield impact resistant all-polymer composites. Although PLA impact modification has been treated extensively, to date, the only practical solutions have relied on non-compostable petroleum-based rubbers. This study illustrates the activity of energy dissipation mechanisms such as cavitation, classically relegated to well-entangled petroleum-based rubbers, in poorly entangled hyperbranched soybean-based rubbers. Furthermore, we present a complete study of the mechanical performance and morphology of these impact modified PLA composites. The significance of combining deformation theory with a scalable green alternative to petroleum-based rubbers opens up a potential avenue for cheap compostable engineering thermoplastics.

6.
J Am Chem Soc ; 144(22): 9548-9553, 2022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-35522967

RESUMO

The diversification of platform chemicals is key to today's petroleum industry. Likewise, the flourishing of tomorrow's biorefineries will rely on molecules with next-generation properties from biomass. Herein, we explore this opportunity with a novel approach to monomers with custom property enhancements. Cyclic diacids with alkyl and aromatic decorations were synthesized from muconic acid by Diels-Alder cycloaddition, and copolymerized with hexamethylenediamine and adipic acid to yield polyamides with built-in hydrophobicity and flame retardancy. Testing shows a 70% reduction in water uptake and doubling of char production while largely retaining other key properties of the parent Nylon-6,6. The present approach can be generalized to access a wide range of performance-advantaged polyamides.


Assuntos
Nylons , Biomassa , Reação de Cicloadição
7.
Mater Horiz ; 8(3): 925-931, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34821322

RESUMO

Thin passivating surface oxide layers on metal alloys form a dissipation horizon between dissimilar phases, hence harbour an inherent free energy and composition gradient. We exploit this gradient to drive order and selective surface separation (speciation), enabling redox-driven enrichment of the core by selective conversion of low standard reduction potential (E°) components into oxides. Coupling this oxide growth to volumetric changes during solidification allows us to create oxide crystallites trapped in a metal ('ship-in-a-bottle') or extrusion of metal fingerlings on the heavily oxidized particle. We confirm the underlying mechanism through high temperature X-ray diffraction and characterization of solidification-trapped particle states. We demonstrate that engineering the passivating surface oxide can lead to purification via selective dealloying with concomitant enrichment of the core, leading to disparate particle morphologies.


Assuntos
Ligas , Óxidos , Oxirredução , Difração de Raios X
8.
ACS Macro Lett ; 9(6): 781-787, 2020 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35648526

RESUMO

Here we report microphase-separated poly(styrene-block-dimethylsiloxane) (PS-b-PDMS) as a reinforcing filler in PDMS thermosets that overcomes the long-standing problem of aging in the processing of silica-reinforced silicone. Surprisingly, PS-b-PDMS reinforced composites display comparable mechanical performance to silica-modified analogs, even though the modulus of PS is much smaller than that of silica and there is no evidence of percolation with respect to the rigid PS domains. We have found that a few unique characteristics contribute to the reinforcing performance of PS-b-PDMS. The strong self-assembly behavior promotes batch-to-batch repeatability by having well-dispersed fillers. The structure and size of the fillers depend on the loading and characteristics of both filler and matrix, along with the shear effect. The reinforcing effect of PS-b-PDMS is mostly brought by the entanglements between the corona layer of the filler and the matrix, rather than the hydrodynamic reinforcement of the PS phase.

9.
Biomacromolecules ; 17(8): 2701-9, 2016 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-27359245

RESUMO

Here we report the reversible addition-fragmentation chain transfer (RAFT) polymerization of acrylated epoxidized soybean oil (AESO), a cross-linker molecule, to high conversion (>50%) and molecular weight (>100 kDa) without macrogelation. Surprisingly, gelation is suppressed in this system far beyond the expectations predicated both on Flory-Stockmeyer theory and multiple other studies of RAFT polymerization featuring cross-linking moieties. By varying AESO and initiator concentrations, we show how intra- versus intermolecular cross-linking compete, yielding a trade-off between the degree of intramolecular linkages and conversion at gel point. We measured polymer chain characteristics, including molecular weight, chain dimensions, polydispersity, and intrinsic viscosity, using multidetector gel permeation chromatography and NMR to track polymerization kinetics. We show that not only the time and conversion at macrogelation, but also the chain architecture, is largely affected by these reaction conditions. At maximal AESO concentration, the gel point approaches that predicted by the Flory-Stockmeyer theory, and increases in an exponential fashion as the AESO concentration decreases. In the most dilute solutions, macrogelation cannot be detected throughout the entire reaction. Instead, cyclization/intramolecular cross-linking reactions dominate, leading to microgelation. This work is important, especially in that it demonstrates that thermoplastic rubbers could be produced based on multifunctional renewable feedstocks.


Assuntos
Reagentes de Ligações Cruzadas/química , Géis/química , Polímeros/química , Óleo de Soja/química , Ciclização , Cinética , Polimerização , Viscosidade
10.
Angew Chem Int Ed Engl ; 55(7): 2368-73, 2016 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-26840213

RESUMO

Biorefineries aim to convert biomass into a spectrum of products ranging from biofuels to specialty chemicals. To achieve economically sustainable conversion, it is crucial to streamline the catalytic and downstream processing steps. In this work, a route that combines bio- and electrocatalysis to convert glucose into bio-based unsaturated nylon-6,6 is reported. An engineered strain of Saccharomyces cerevisiae was used as the initial biocatalyst for the conversion of glucose into muconic acid, with the highest reported muconic acid titer of 559.5 mg L(-1) in yeast. Without any separation, muconic acid was further electrocatalytically hydrogenated to 3-hexenedioic acid in 94 % yield despite the presence of biogenic impurities. Bio-based unsaturated nylon-6,6 (unsaturated polyamide-6,6) was finally obtained by polymerization of 3-hexenedioic acid with hexamethylenediamine.


Assuntos
Carboidratos/química , Engenharia Metabólica , Nylons/síntese química , Biomassa , Catálise , Fermentação
11.
Org Biomol Chem ; 12(18): 2834-49, 2014 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-24687118

RESUMO

Biopolymers have been used throughout history; however, in the last two centuries they have seen a decrease in their utilization as the proliferation of inexpensive and mass-produced materials from petrochemical feedstocks quickly became better-suited to meeting society's needs. In recent years, high petroleum prices and the concern of society to adopt greener and cleaner products has led to an increased interest in biorenewable polymers and the use of sustainable technologies to produce them. Industrial and academic researchers alike have targeted several routes for producing these renewable materials. In this perspective, we compare and contrast two distinct approaches to the economical realization of these materials. One mentality that has emerged we term "bioreplacement", in which the fields of synthetic biology and catalysis collaborate to coax petrochemical monomers from sugars and lignocellulosic feedstocks that can subsequently be used in precisely the same ways to produce precisely the same polymers as we know today. For example, the metabolic engineering of bacteria is currently being explored as a viable route to common monomers such as butadiene, isoprene, styrene, acrylic acid, and sebacic acid, amongst others. Another motif that has recently gained traction may be referred to as the "bioadvantage" strategy, where the multifunctional "monomers" given to us by nature are combined in novel ways using novel chemistries to yield new polymers with new properties; for these materials to compete with their petroleum-based counterparts, they must add some advantage, for example less cost. For instance, acrylated epoxidized soybean oil readily undergoes polymerization to thermosets and recently, thermoplastic rubbers. Additionally, many plants produce pre-polymeric or polymeric materials that require little or no post modification to extract and make use of these compounds.


Assuntos
Biopolímeros/metabolismo , Química Verde/métodos , Biomassa , Biopolímeros/química , Catálise , Polimerização
12.
Phys Rev Lett ; 93(8): 087802, 2004 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-15447227

RESUMO

A tricontinuous (10,3)c network phase is documented in a poly(cyclohexylethylene-b-ethylethylene-b-ethylene) triblock copolymer melt based on small-angle x-ray scattering. Application of shear transforms the self-assembled soft material into a single crystal (10,3)d network while preserving the short-range threefold connector geometry. Long-range topological restructuring reduces the space group symmetry, from Fddd to Pnna, maintaining orthorhombic lattice symmetry. Both phases are stable to long time annealing, indicative of nearly degenerate free energies and prohibitive kinetic barriers.


Assuntos
Polímeros/química , Biofísica/métodos , Cinética , Modelos Teóricos , Espalhamento de Radiação , Estresse Mecânico , Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...