Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Animals (Basel) ; 12(13)2022 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-35804553

RESUMO

Consumption of fiber in its different forms can result in positive health effects. Prior studies in dogs found that addition of a fiber bundle (composed of pecan shells, flax seed, and powders of cranberry, citrus, and beet) to food resulted in a shift in fecal bacterial metabolism from proteolysis to saccharolysis. The present study evaluated the changes in fecal metabolites and microbiota in healthy cats following the consumption of this fiber bundle. Following a 28-day pre-feed period, 56 healthy adult cats received food with none or one of three concentrations (0%, 1%, 2%, and 4%) of the fiber bundle for a 31-day period. In cats that consumed the 4% fiber bundle, levels of ammonium and fecal branched-chain fatty acids (BCFAs) decreased from baseline and compared with the other groups. Addition of any level of the fiber bundle resulted in increases in beneficial metabolites: polyphenols hesperidin, hesperetin, ponciretin, secoisolariciresinol diglucoside, secoisolariciresinol, and enterodiol. Little change in fecal microbiota was observed. Since higher levels of ammonia and BCFAs indicate putrefactive metabolism, the decreases in these with the 4% fiber bundle indicate a shift toward saccharolytic metabolism despite little change in the microbiota composition.

2.
BMC Vet Res ; 18(1): 245, 2022 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-35751094

RESUMO

BACKGROUND: Chronic large bowel diarrhea is a common occurrence in pet dogs. While nutritional intervention is considered the primary therapy, the metabolic and gut microfloral effects of fiber and polyphenol-enriched therapeutic foods are poorly understood. METHODS: This prospective clinical study enrolled 31 adult dogs from private veterinary practices with chronic, active large bowel diarrhea. Enrolled dogs received a complete and balanced dry therapeutic food containing a proprietary fiber bundle for 56 days. Metagenomic and metabolomic profiling were performed on fecal samples at Days 1, 2, 3, 14, 28, and 56; metabolomic analysis was conducted on serum samples taken at Days 1, 2, 3, 28, and 56. RESULTS: The dietary intervention improved clinical signs and had a clear effect on the gut microfloral metabolic output of canines with chronic diarrhea, shifting gut metabolism from a predominantly proteolytic to saccharolytic fermentative state. Microbial metabolism of tryptophan to beneficial indole postbiotics and the conversion of plant-derived phenolics into bioavailable postbiotics were observed. The intervention altered the endocannabinoid, polyunsaturated fatty acid, and sphingolipid profiles, suggesting a modulation in gastrointestinal inflammation. Changes in membrane phospholipid and collagen signatures were indicative of improved gut function and possible alleviation of the pathophysiology related to chronic diarrhea. CONCLUSIONS: In dogs with chronic diarrhea, feeding specific dietary fibers increased gut saccharolysis and bioavailable phenolic and indole-related compounds, while suppressing putrefaction. These changes were associated with improved markers of gut inflammation and stool quality.


Assuntos
Doenças do Cão , Microbiota , Animais , Diarreia/veterinária , Dieta/veterinária , Fibras na Dieta/uso terapêutico , Doenças do Cão/tratamento farmacológico , Cães , Fezes , Indóis , Inflamação/veterinária , Estudos Prospectivos
3.
Animals (Basel) ; 12(5)2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35268196

RESUMO

This study assessed changes in canine fecal metabolites and microbiota with the consumption of foods with increasing concentrations of a fiber bundle including pecan shells, flax seed, and powders of cranberry, citrus, and beet that was previously shown (at 14% w/w) to improve stool quality, shift fecal bacterial metabolism from proteolysis to saccharolysis, increase abundance of saccharolytic bacteria, and decrease abundance of proteolytic bacteria. In this study, 48 healthy adult dogs were split evenly to consume different inclusion levels (0%, 1%, 2%, and 4%) of the fiber bundle for a 31-day period following a 28-day pre-feed period. Increases from baseline in the fecal short-chain fatty acids butyric acid, valeric acid, and hexanoic acid were observed only in the dogs that consumed the food with the 4% fiber bundle. With addition of any level of the fiber bundle, increases were seen in the polyphenols hesperidin, hesperetin, ponciretin, secoisolariciresinol diglucoside, secoisolariciresinol, and enterodiol. However, fecal microbiota and their metabolism, and stool scores were largely unaffected by the fiber bundle. Overall, addition of the fiber bundle appeared to increase bioactive metabolites of increased antioxidant and anti-inflammatory potency for beneficial to health and, at levels ≥4%, shifted gut bacterial metabolism toward saccharolysis.

4.
Front Vet Sci ; 9: 1039032, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36744230

RESUMO

Introduction: Pet foods fortified with fermentable fibers are often indicated for dogs with gastrointestinal conditions to improve gut health through the production of beneficial post-biotics by the pet's microbiome. Methods: To evaluate the therapeutic underpinnings of pre-biotic fiber enrichment, we compared the fecal microbiome, the fecal metabolome, and the serum metabolome of 39 adult dogs with well-managed chronic gastroenteritis/enteritis (CGE) and healthy matched controls. The foods tested included a test food (TF1) containing a novel pre-biotic fiber bundle, a control food (CF) lacking the fiber bundle, and a commercially available therapeutic food (TF2) indicated for managing fiber-responsive conditions. In this crossover study, all dogs consumed CF for a 4-week wash-in period, were randomized to either TF1 or TF2 and fed for 4 weeks, were fed CF for a 4-week washout period, and then received the other test food for 4 weeks. Results: Meaningful differences were not observed between the healthy and CGE dogs in response to the pre-biotic fiber bundle relative to CF. Both TF1 and TF2 improved stool scores compared to CF. TF1-fed dogs showed reduced body weight and fecal ash content compared to either CF or TF2, while stools of TF2-fed dogs showed higher pH and lower moisture content vs. TF1. TF1 consumption also resulted in unique fecal and systemic metabolic signatures compared to CF and TF2. TF1-fed dogs showed suppressed signals of fecal bacterial putrefactive metabolism compared to either CF or TF2 and increased saccharolytic signatures compared to TF2. A functional analysis of fecal tryptophan metabolism indicated reductions in fecal kynurenine and indole pathway metabolites with TF1. Among the three foods, TF1 uniquely increased fecal polyphenols and the resulting post-biotics. Compared to CF, consumption of TF1 largely reduced fecal levels of endocannabinoid-like metabolites and sphingolipids while increasing both fecal and circulating polyunsaturated fatty acid profiles, suggesting that TF1 may have modulated gastrointestinal inflammation and motility. Stools of TF1-fed dogs showed reductions in phospholipid profiles, suggesting fiber-dependent changes to colonic mucosal structure. Discussion: These findings indicate that the use of a specific pre-biotic fiber bundle may be beneficial in healthy dogs and in dogs with CGE.

5.
Toxins (Basel) ; 12(8)2020 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-32806674

RESUMO

The optimal ranges of protein for healthy adult dogs are not known. This study evaluated the impact of long-term consumption of foods containing low, medium, and high levels of protein on serum, urine, and fecal metabolites, and gut microbiome in beagles. Following maintenance on a prefeed food for 14 days, dogs (15 neutered males, 15 spayed females, aged 2-9 years, mean initial weight 11.3 kg) consumed the low (18.99%, dry matter basis), medium (25.34%), or high (45.77%) protein foods, each for 90 days, in a William's Latin Square Design sequence. In serum and/or urine, metabolites associated with inflammation (9,10-dihydroxyoctadecanoic acid (DiHOME)), 12,13-DiHOME) and kidney dysfunction (urea, 5-hydroxyindole sulfate, 7-hydroxyindole sulfate, p-cresol sulfate) increased with higher protein levels in food, while one-carbon pathway metabolites (betaine, dimethylglycine, sarcosine) decreased. Fecal pH increased with protein consumed, and levels of beneficial indoles and short-chain fatty acids decreased while branched-chain fatty acids increased. Beta diversity of the fecal microbiome was significantly different, with increased abundances of proteolytic bacteria with higher protein food. Feeding dogs a high amount of protein leads to a shift to proteolytic gut bacteria, higher fecal pH, and is associated with increased levels of metabolites linked with inflammation and kidney dysfunction.


Assuntos
Dieta/veterinária , Proteínas Alimentares/administração & dosagem , Cães/microbiologia , Microbioma Gastrointestinal , Metabolômica , Ração Animal , Animais , Biodiversidade , Análise Química do Sangue , Fezes/microbiologia , Feminino , Masculino , Análise de Componente Principal , Urina/química
6.
J Anim Physiol Anim Nutr (Berl) ; 104(5): 1551-1567, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32705743

RESUMO

Digestion-resistant starch (RS) can provide health benefits to the host via gut microbiome-mediated metabolism. This study tested the physiological effects on healthy dogs of identically formulated foods processed under high (n = 16) or low (n = 16) shear extrusion conditions resulting in respective lower and higher levels of RS. Faecal samples collected at weeks 3 and 6 were assayed for stool score, proximate analysis, short-chain fatty acids (SCFA), immunoglobulin A (IgA) and microbiome; faecal metabolome was characterized at week 6. Proximate and digestibility analyses of the foods and stool scores and stool proximate analysis showed few differences between the two shear methods except for increased apparent fibre digestibility in the low shear food. In contrast, levels of butyrate (p = .030) and total SCFA (p = .043) were significantly greater in faeces at week 6 from dogs who consumed the low versus high shear food. Faecal IgA levels were significantly higher at week 3 (p = .001) but not week 6 (p = .110) in the low shear food. Significant differences in 166 metabolites between consumption of the two foods were identified via faecal metabolomic analysis, with changes in sugars, bile acids, advanced glycation end products and few amino acids. Strikingly, consumption of the low shear food resulted in elevated levels of the reduced members of redox couples derived from metabolized sugars and branched-chain and phenyl amino acids. Alpha diversity of the microbiome showed significantly higher species richness in faeces from the low shear group at week 6, though other measures of diversity were similar for both foods. Twelve genus-level operational taxonomic units (OTU; half Firmicutes) significantly differed between the food types. Six OTU significantly correlated with RS-derived sugars and ratios of the redox couples. Taken together, these data show that RS impacts microbiome-mediated metabolism in the gut, resulting in changes in the reducing state.


Assuntos
Ração Animal/análise , Dieta/veterinária , Cães/fisiologia , Manipulação de Alimentos/métodos , Microbioma Gastrointestinal/fisiologia , Imunoglobulina A/metabolismo , Animais , Fezes/química , Fezes/microbiologia , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA