Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PeerJ ; 11: e15648, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37609440

RESUMO

THAPBI PICT is an open source software pipeline for metabarcoding analysis of Illumina paired-end reads, including cases of multiplexing where more than one amplicon is amplified per DNA sample. Initially a Phytophthora ITS1 Classification Tool (PICT), we demonstrate using worked examples with our own and public data sets how, with appropriate primer settings and a custom database, it can be applied to other amplicons and organisms, and used for reanalysis of existing datasets. The core dataflow of the implementation is (i) data reduction to unique marker sequences, often called amplicon sequence variants (ASVs), (ii) dynamic thresholds for discarding low abundance sequences to remove noise and artifacts (rather than error correction by default), before (iii) classification using a curated reference database. The default classifier assigns a label to each query sequence based on a database match that is either perfect, or a single base pair edit away (substitution, deletion or insertion). Abundance thresholds for inclusion can be set by the user or automatically using per-batch negative or synthetic control samples. Output is designed for practical interpretation by non-specialists and includes a read report (ASVs with classification and counts per sample), sample report (samples with counts per species classification), and a topological graph of ASVs as nodes with short edit distances as edges. Source code available from https://github.com/peterjc/thapbi-pict/ with documentation including installation instructions.


Assuntos
Anatomia Regional , Phytophthora , Artefatos , Cultura , Bases de Dados Factuais
2.
Genome Res ; 33(2): 261-268, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36828587

RESUMO

There are thousands of well-maintained high-quality open-source software utilities for all aspects of scientific data analysis. For more than a decade, the Galaxy Project has been providing computational infrastructure and a unified user interface for these tools to make them accessible to a wide range of researchers. To streamline the process of integrating tools and constructing workflows as much as possible, we have developed Planemo, a software development kit for tool and workflow developers and Galaxy power users. Here we outline Planemo's implementation and describe its broad range of functionality for designing, testing, and executing Galaxy tools, workflows, and training material. In addition, we discuss the philosophy underlying Galaxy tool and workflow development, and how Planemo encourages the use of development best practices, such as test-driven development, by its users, including those who are not professional software developers.


Assuntos
Biologia Computacional , Software , Fluxo de Trabalho , Análise de Dados
3.
J Fungi (Basel) ; 8(4)2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35448560

RESUMO

Isolation techniques supplemented by sequencing of DNA from axenic cultures have provided a robust methodology for the study of Phytophthora communities in agricultural and natural ecosystems. Recently, metabarcoding approaches have emerged as new paradigms for the detection of Phytophthora species in environmental samples. In this study, Illumina DNA metabarcoding and a conventional leaf baiting isolation technique were compared to unravel the variability of Phytophthora communities in different environments. Overall, 39 rhizosphere soil samples from a natural, a semi-natural and a horticultural small-scale ecosystem, respectively, were processed by both baiting and metabarcoding. Using both detection techniques, 28 out of 39 samples tested positive for Phytophthora. Overall, 1,406,613 Phytophthora internal transcribed spacer 1 (ITS1) sequences and 155 Phytophthora isolates were obtained, which grouped into 21 taxa, five retrieved exclusively by baiting (P. bilorbang; P. cryptogea; P. gonapodyides; P. parvispora and P. pseudocryptogea), 12 exclusively by metabarcoding (P. asparagi; P. occultans; P. psycrophila; P. syringae; P. aleatoria/P. cactorum; P. castanetorum/P. quercina; P. iranica-like; P. unknown sp. 1; P. unknown sp. 2; P. unknown sp. 3; P. unknown sp. 4; P. unknown sp. 5) and four with both techniques (P. citrophthora, P. multivora, P. nicotianae and P. plurivora). Both techniques complemented each other in describing the variability of Phytophthora communities from natural and managed ecosystems and revealing the presence of rare or undescribed Phytophthora taxa.

4.
F1000Res ; 102021.
Artigo em Inglês | MEDLINE | ID: mdl-34721839

RESUMO

The 22nd annual Bioinformatics Open Source Conference (BOSC 2021, open-bio.org/events/bosc-2021/) was held online as a track of the 2021 Intelligent Systems for Molecular Biology / European Conference on Computational Biology (ISMB/ECCB) conference. Launched in 2000 and held every year since, BOSC is the premier meeting covering topics related to open source software and open science in bioinformatics. In 2020, BOSC partnered with the Galaxy Community Conference to form the Bioinformatics Community Conference (BCC2020); that was the first BOSC to be held online. This year, BOSC returned to its roots as part of ISMB/ECCB 2021. As in 2020, the Covid-19 pandemic made it impossible to hold the conference in person, so ISMB/ECCB 2021 took place as an online meeting attended by over 2000 people from 79 countries. Nearly 200 people participated in BOSC sessions, which included 27 talks reviewed and selected from submitted abstracts, and three invited keynote talks representing a range of global perspectives on the role of open science and open source in driving research and inclusivity in the biosciences, one of which was presented in French with English subtitles.


Assuntos
Biologia Computacional , Humanos , Pandemias , Software
5.
Genes (Basel) ; 11(12)2020 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-33260722

RESUMO

Although the use of natural resistance is the most effective management approach against the potato cyst nematode (PCN) Globodera pallida, the existence of pathotypes with different virulence characteristics constitutes a constraint towards this goal. Two resistance sources, GpaV (from Solanum vernei) and H3 from S. tuberosum ssp. andigena CPC2802 (from the Commonwealth Potato Collection) are widely used in potato breeding programmes in European potato industry. However, the use of resistant cultivars may drive strong selection towards virulence, which allows the increase in frequency of virulent alleles in the population and therefore, the emergence of highly virulent nematode lineages. This study aimed to identify Avirulence (Avr) genes in G. pallida populations selected for virulence on the above resistance sources, and the genomic impact of selection processes on the nematode. The selection drive in the populations was found to be specific to their genetic background. At the genomic level, 11 genes were found that represent candidate Avr genes. Most of the variant calls determining selection were associated with H3-selected populations, while many of them seem to be organised in genomic islands facilitating selection evolution. These phenotypic and genomic findings combined with histological studies performed revealed potential mechanisms underlying selection in G. pallida.


Assuntos
Nematoides , Doenças das Plantas/genética , Doenças das Plantas/parasitologia , Solanum tuberosum/parasitologia , Animais , Resistência à Doença , Nematoides/genética , Nematoides/patogenicidade , Virulência
6.
F1000Res ; 92020.
Artigo em Inglês | MEDLINE | ID: mdl-32983415

RESUMO

Launched in 2000 and held every year since, the Bioinformatics Open Source Conference (BOSC) is a volunteer-run meeting coordinated by the Open Bioinformatics Foundation (OBF) that covers open source software development and open science in bioinformatics. Most years, BOSC has been part of the Intelligent Systems for Molecular Biology (ISMB) conference, but in 2018, and again in 2020, BOSC partnered with the Galaxy Community Conference (GCC). This year's combined BOSC + GCC conference was called the Bioinformatics Community Conference (BCC2020, bcc2020.github.io). Originally slated to take place in Toronto, Canada, BCC2020 was moved online due to COVID-19. The meeting started with a wide array of training sessions; continued with a main program of keynote presentations, talks, posters, Birds of a Feather, and more; and ended with four days of collaboration (CoFest). Efforts to make the meeting accessible and inclusive included very low registration fees, talks presented twice a day, and closed captioning for all videos. More than 800 people from 61 countries registered for at least one part of the meeting, which was held mostly in the Remo.co video-conferencing platform.


Assuntos
Biologia Computacional , Congressos como Assunto , Canadá , Humanos
7.
F1000Res ; 82019.
Artigo em Inglês | MEDLINE | ID: mdl-32025286

RESUMO

The Bioinformatics Open Source Conference is a volunteer-organized meeting that covers open source software development and open science in bioinformatics. Launched in 2000, BOSC has been held every year since. BOSC 2019, the 20th annual BOSC, took place as one of the Communities of Special Interest (COSIs) at the Intelligent Systems for Molecular Biology meeting (ISMB/ECCB 2019). The two-day meeting included a total of 46 talks and 55 posters, as well as eight Birds of a Feather interest groups. The keynote speaker was University of Cape Town professor Dr. Nicola Mulder, who spoke on "Building infrastructure for responsible open science in Africa". Immediately after BOSC 2019, about 50 people participated in the two-day CollaborationFest (CoFest for short), an open and free community-driven event at which participants work together to contribute to bioinformatics software, documentation, training materials, and use cases.


Assuntos
Biologia Computacional , Software , Congressos como Assunto , Fluxo de Trabalho
8.
Front Plant Sci ; 10: 1763, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32063916

RESUMO

Pasteuria spp. are endospore forming bacteria which act as natural antagonists to many of the most economically significant plant parasitic nematodes (PPNs). Highly species-specific nematode suppression may be observed in soils containing a sufficiently high density of Pasteuria spp. spores. This suppression is enacted by the bacteria via inhibition of root invasion and sterilization of the nematode host. Molecular methods for the detection of Pasteuria spp. from environmental DNA (eDNA) have been described; however, these methods are limited in both scale and in depth. We report the use of small subunit rRNA gene metabarcoding to profile Pasteuria spp. and nematode communities in parallel. We have investigated Pasteuria spp. population structure in Scottish soils using eDNA from two sources: soil extracted DNA from the second National Soil Inventory of Scotland (NSIS2); and nematode extracted DNA collected from farms in the East Scotland Farm Network (ESFN). We compared the Pasteuria spp. community culture to both nematode community structure and the physiochemical properties of soils. Our results indicate that Pasteuria spp. populations in Scottish soils are broadly dominated by two sequence variants. The first of these aligns with high identity to Pasteuria hartismeri, a species first described parasitizing Meloidogyne ardenensis, a nematode parasite of woody and perennial plants in northern Europe. The second aligns with a Pasteuria-like sequence which was first recovered from a farm near Edinburgh which was found to contain bacterial feeding nematodes and Pratylenchus spp. encumbered by Pasteuria spp. endospores. Further, soil carbon, moisture, bulk density, and pH showed a strong correlation with the Pasteuria spp. community composition. These results indicate that metabarcoding is appropriate for the sensitive, specific, and semi-quantitative profiling of Pasteuria species from eDNA.

9.
F1000Res ; 72018.
Artigo em Inglês | MEDLINE | ID: mdl-30210780

RESUMO

In 2018, the annual Bioinformatics Open Source Conference was held for the first time in conjunction with the Galaxy Community Conference, as an experiment to see if we could reach people in the bioinformatics community who aren't part of the audience attracted by ISMB. Held in June 2018 at Reed College in Portland, Oregon, GCCBOSC (Galaxy Community Conference and Bioinformatics Open Source Conference) attracted over 300 participants from around the world. The meeting started with two days of training, followed by two days of talks and poster/demo sessions (with some joint and some parallel sessions). The joint sessions included well-received keynote talks by Tracy Teal, Fernando Pérez and Lucia Peixoto, as well as a panel discussion about documentation and training. After the main meeting, many attendees stayed for up to four additional collaboration days, an extended version of the Codefests that have been held in conjunction with previous BOSCs. GCCBOSC was a successful experiment. The organizers concluded that the best way to serve the broadest community of potential BOSC attendees will be to partner some years with the International Society for Computational Biology (ISMB) and others with GCC.


Assuntos
Biologia Computacional , Colaboração Intersetorial
10.
Genome Biol Evol ; 10(10): 2716-2733, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30165560

RESUMO

Aphids are a diverse group of taxa that contain agronomically important species, which vary in their host range and ability to infest crop plants. The genome evolution underlying agriculturally important aphid traits is not well understood. We generated draft genome assemblies for two aphid species: Myzus cerasi (black cherry aphid) and the cereal specialist Rhopalosiphum padi. Using a de novo gene prediction pipeline on both these, and three additional aphid genome assemblies (Acyrthosiphon pisum, Diuraphis noxia, and Myzus persicae), we show that aphid genomes consistently encode similar gene numbers. We compare gene content, gene duplication, synteny, and putative effector repertoires between these five species to understand the genome evolution of globally important plant parasites. Aphid genomes show signs of relatively distant gene duplication, and substantial, relatively recent, gene birth. Putative effector repertoires, originating from duplicated and other loci, have an unusual genomic organization and evolutionary history. We identify a highly conserved effector pair that is tightly physically linked in the genomes of all aphid species tested. In R. padi, this effector pair is tightly transcriptionally linked and shares an unknown transcriptional control mechanism with a subset of ∼50 other putative effectors and secretory proteins. This study extends our current knowledge on the evolution of aphid genomes and reveals evidence for an as-of-yet unknown shared control mechanism, which underlies effector expression, and ultimately plant parasitism.


Assuntos
Afídeos/genética , Regulação da Expressão Gênica , Genoma de Inseto , Herbivoria/genética , Animais , Evolução Biológica , Duplicação Gênica , Transferência Genética Horizontal
11.
F1000Res ; 62017.
Artigo em Inglês | MEDLINE | ID: mdl-29118973

RESUMO

The Bioinformatics Open Source Conference (BOSC) is a meeting organized by the Open Bioinformatics Foundation (OBF), a non-profit group dedicated to promoting the practice and philosophy of Open Source software development and Open Science within the biological research community. The 18th annual BOSC ( http://www.open-bio.org/wiki/BOSC_2017) took place in Prague, Czech Republic in July 2017. The conference brought together nearly 250 bioinformatics researchers, developers and users of open source software to interact and share ideas about standards, bioinformatics software development, open and reproducible science, and this year's theme, open data. As in previous years, the conference was preceded by a two-day collaborative coding event open to the bioinformatics community, called the OBF Codefest.

12.
F1000Res ; 52016.
Artigo em Inglês | MEDLINE | ID: mdl-27781083

RESUMO

Message from the ISCB: The Bioinformatics Open Source Conference (BOSC) is a yearly meeting organized by the Open Bioinformatics Foundation (OBF), a non-profit group dedicated to promoting the practice and philosophy of Open Source software development and Open Science within the biological research community. BOSC has been run since 2000 as a two-day Special Interest Group (SIG) before the annual ISMB conference. The 17th annual BOSC ( http://www.open-bio.org/wiki/BOSC_2016) took place in Orlando, Florida in July 2016. As in previous years, the conference was preceded by a two-day collaborative coding event open to the bioinformatics community. The conference brought together nearly 100 bioinformatics researchers, developers and users of open source software to interact and share ideas about standards, bioinformatics software development, and open and reproducible science.

13.
Microb Ecol ; 72(3): 669-81, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27461253

RESUMO

Pine wilt disease (PWD) results from the interaction of three elements: the pathogenic nematode, Bursaphelenchus xylophilus; the insect-vector, Monochamus sp.; and the host tree, mostly Pinus species. Bacteria isolated from B. xylophilus may be a fourth element in this complex disease. However, the precise role of bacteria in this interaction is unclear as both plant-beneficial and as plant-pathogenic bacteria may be associated with PWD. Using whole genome sequencing and phenotypic characterization, we were able to investigate in more detail the genetic repertoire of Serratia marcescens PWN146, a bacterium associated with B. xylophilus. We show clear evidence that S. marcescens PWN146 is able to withstand and colonize the plant environment, without having any deleterious effects towards a susceptible host (Pinus thunbergii), B. xylophilus nor to the nematode model C. elegans. This bacterium is able to tolerate growth in presence of xenobiotic/organic compounds, and use phenylacetic acid as carbon source. Furthermore, we present a detailed list of S. marcescens PWN146 potentials to interfere with plant metabolism via hormonal pathways and/or nutritional acquisition, and to be competitive against other bacteria and/or fungi in terms of resource acquisition or production of antimicrobial compounds. Further investigation is required to understand the role of bacteria in PWD. We have now reinforced the theory that B. xylophilus-associated bacteria may have a plant origin.


Assuntos
Endófitos , Estilo de Vida , Infecções Oportunistas , Pinus/microbiologia , Serratia marcescens/isolamento & purificação , Serratia marcescens/fisiologia , Serratia marcescens/patogenicidade , Tylenchida/microbiologia , Animais , Anti-Infecciosos , Antinematódeos/farmacologia , Sequência de Bases , Classificação , Besouros/microbiologia , DNA Bacteriano , Genes Bacterianos , Interações Hospedeiro-Parasita/fisiologia , Insetos Vetores/microbiologia , Microscopia Confocal , Microscopia Eletrônica de Varredura , Anotação de Sequência Molecular , Nematoides/patogenicidade , Filogenia , Pinus/parasitologia , Doenças das Plantas/microbiologia , Serratia marcescens/genética , Árvores/microbiologia , Árvores/parasitologia , Tylenchida/efeitos dos fármacos , Tylenchida/patogenicidade
14.
Genome Biol ; 17(1): 124, 2016 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-27286965

RESUMO

BACKGROUND: The yellow potato cyst nematode, Globodera rostochiensis, is a devastating plant pathogen of global economic importance. This biotrophic parasite secretes effectors from pharyngeal glands, some of which were acquired by horizontal gene transfer, to manipulate host processes and promote parasitism. G. rostochiensis is classified into pathotypes with different plant resistance-breaking phenotypes. RESULTS: We generate a high quality genome assembly for G. rostochiensis pathotype Ro1, identify putative effectors and horizontal gene transfer events, map gene expression through the life cycle focusing on key parasitic transitions and sequence the genomes of eight populations including four additional pathotypes to identify variation. Horizontal gene transfer contributes 3.5 % of the predicted genes, of which approximately 8.5 % are deployed as effectors. Over one-third of all effector genes are clustered in 21 putative 'effector islands' in the genome. We identify a dorsal gland promoter element motif (termed DOG Box) present upstream in representatives from 26 out of 28 dorsal gland effector families, and predict a putative effector superset associated with this motif. We validate gland cell expression in two novel genes by in situ hybridisation and catalogue dorsal gland promoter element-containing effectors from available cyst nematode genomes. Comparison of effector diversity between pathotypes highlights correlation with plant resistance-breaking. CONCLUSIONS: These G. rostochiensis genome resources will facilitate major advances in understanding nematode plant-parasitism. Dorsal gland promoter element-containing effectors are at the front line of the evolutionary arms race between plant and parasite and the ability to predict gland cell expression a priori promises rapid advances in understanding their roles and mechanisms of action.


Assuntos
Genoma de Protozoário , Doenças das Plantas/parasitologia , Solanum tuberosum/parasitologia , Tylenchoidea/genética , Tylenchoidea/patogenicidade , Animais , Elementos Facilitadores Genéticos , Perfilação da Expressão Gênica , Transferência Genética Horizontal , Ilhas Genômicas , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Estágios do Ciclo de Vida , Motivos de Nucleotídeos , Matrizes de Pontuação de Posição Específica , Sítios de Splice de RNA , Splicing de RNA , Transcriptoma , Tylenchoidea/crescimento & desenvolvimento , Virulência/genética
15.
J Biomed Semantics ; 7: 39, 2016 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-27296299

RESUMO

BACKGROUND: Nucleotide and protein sequence feature annotations are essential to understand biology on the genomic, transcriptomic, and proteomic level. Using Semantic Web technologies to query biological annotations, there was no standard that described this potentially complex location information as subject-predicate-object triples. DESCRIPTION: We have developed an ontology, the Feature Annotation Location Description Ontology (FALDO), to describe the positions of annotated features on linear and circular sequences. FALDO can be used to describe nucleotide features in sequence records, protein annotations, and glycan binding sites, among other features in coordinate systems of the aforementioned "omics" areas. Using the same data format to represent sequence positions that are independent of file formats allows us to integrate sequence data from multiple sources and data types. The genome browser JBrowse is used to demonstrate accessing multiple SPARQL endpoints to display genomic feature annotations, as well as protein annotations from UniProt mapped to genomic locations. CONCLUSIONS: Our ontology allows users to uniformly describe - and potentially merge - sequence annotations from multiple sources. Data sources using FALDO can prospectively be retrieved using federalised SPARQL queries against public SPARQL endpoints and/or local private triple stores.


Assuntos
Ontologias Biológicas , Anotação de Sequência Molecular/normas , Nucleotídeos/genética , Nucleotídeos/metabolismo , Proteínas/química , Proteínas/metabolismo , Semântica , Bases de Dados Genéticas , Bases de Dados de Proteínas , Lógica Fuzzy , Humanos , Obras de Referência
16.
BMC Genomics ; 17: 301, 2016 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-27108223

RESUMO

BACKGROUND: Pine wilt disease (PWD) is a worldwide threat to pine forests, and is caused by the pine wood nematode (PWN) Bursaphelenchus xylophilus. Bacteria are known to be associated with PWN and may have an important role in PWD. Serratia sp. LCN16 is a PWN-associated bacterium, highly resistant to oxidative stress in vitro, and which beneficially contributes to the PWN survival under these conditions. Oxidative stress is generated as a part of the basal defense mechanism used by plants to combat pathogenic invasion. Here, we studied the biology of Serratia sp. LCN16 through genome analyses, and further investigated, using reverse genetics, the role of two genes directly involved in the neutralization of H2O2, namely the H2O2 transcriptional factor oxyR; and the H2O2-targeting enzyme, catalase katA. RESULTS: Serratia sp. LCN16 is phylogenetically most closely related to the phytosphere group of Serratia, which includes S. proteamaculans, S. grimessi and S. liquefaciens. Likewise, Serratia sp. LCN16 shares many features with endophytes (plant-associated bacteria), such as genes coding for plant polymer degrading enzymes, iron uptake/transport, siderophore and phytohormone synthesis, aromatic compound degradation and detoxification enzymes. OxyR and KatA are directly involved in the high tolerance to H2O2 of Serratia sp. LCN16. Under oxidative stress, Serratia sp. LCN16 expresses katA independently of OxyR in contrast with katG which is under positive regulation of OxyR. Serratia sp. LCN16 mutants for oxyR (oxyR::int(614)) and katA (katA::int(808)) were sensitive to H2O2 in relation with wild-type, and both failed to protect the PWN from H2O2-stress exposure. Moreover, both mutants showed different phenotypes in terms of biofilm production and swimming/swarming behaviors. CONCLUSIONS: This study provides new insights into the biology of PWN-associated bacteria Serratia sp. LCN16 and its extreme resistance to oxidative stress conditions, encouraging further research on the potential role of this bacterium in interaction with PWN in planta environment.


Assuntos
Proteínas de Bactérias/genética , Estresse Oxidativo , Peroxidases/genética , Doenças das Plantas/microbiologia , Serratia/genética , Fatores de Transcrição/genética , Tylenchida/microbiologia , Animais , Proteínas de Bactérias/metabolismo , Técnicas de Inativação de Genes , Genoma Bacteriano , Peróxido de Hidrogênio/química , Peroxidases/metabolismo , Filogenia , Pinus/microbiologia , Pinus/parasitologia , Serratia/classificação , Fatores de Transcrição/metabolismo
17.
BMC Genomics ; 17: 172, 2016 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-26935069

RESUMO

BACKGROUND: Aphids are phloem-feeding insects that cause significant economic losses to agriculture worldwide. While feeding and probing these insects deliver molecules, called effectors, inside their host to enable infestation. The identification and characterization of these effectors from different species that vary in their host range is an important step in understanding the infestation success of aphids and aphid host range variation. This study employs a multi-disciplinary approach based on transcriptome sequencing and proteomics to identify and compare effector candidates from the broad host range aphid Myzus persicae (green peach aphid) (genotypes O, J and F), and narrow host range aphids Myzus cerasi (black cherry aphid) and Rhopalosiphum padi (bird-cherry oat aphid). RESULTS: Using a combination of aphid transcriptome sequencing on libraries derived from head versus body tissues as well as saliva proteomics we were able to predict candidate effectors repertoires from the different aphid species and genotypes. Among the identified conserved or core effector sets, we identified a significant number of previously identified aphid candidate effectors indicating these proteins may be involved in general infestation strategies. Moreover, we identified aphid candidate effector sequences that were specific to one species, which are interesting candidates for further validation and characterization with regards to species-specific functions during infestation. We assessed our candidate effector repertoires for evidence of positive selection, and identified 49 candidates with DN/DS ratios >1. We noted higher rates of DN/DS ratios in predicted aphid effectors than non-effectors. Whether this reflects positive selection due to co-evolution with host plants, or increased neofunctionalization upon gene duplication remains to be investigated. CONCLUSION: Our work provides a comprehensive overview of the candidate effector repertoires from three different aphid species with varying host ranges. Comparative analyses revealed candidate effectors that are most likely are involved in general aspects of infestation, whereas others, that are highly divergent, may be involved in specific processes important for certain aphid species. Insights into the overlap and differences in aphid effector repertoires are important in understanding how different species successfully infest different ranges of plant species.


Assuntos
Afídeos/genética , Proteoma/genética , Transcriptoma , Sequência de Aminoácidos , Animais , Análise por Conglomerados , Genótipo , Especificidade de Hospedeiro , Proteínas de Insetos/genética , Dados de Sequência Molecular , Saliva/química , Seleção Genética , Análise de Sequência de RNA , Especificidade da Espécie
18.
PeerJ ; 4: e1654, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26870612

RESUMO

Plant-parasitic nematodes (PPN) need to be adapted to survive in the absence of a suitable host or in hostile environmental conditions. Various forms of developmental arrest including hatching inhibition and dauer stages are used by PPN in order to survive these conditions and spread to other areas. Potato cyst nematodes (PCN) (Globodera pallida and G. rostochiensis) are frequently in an anhydrobiotic state, with unhatched nematode persisting for extended periods of time inside the cyst in the absence of the host. This paper shows fundamental changes in the response of quiescent and diapaused eggs of G. pallida to hydration and following exposure to tomato root diffusate (RD) using microarray gene expression analysis encompassing a broad set of genes. For the quiescent eggs, 547 genes showed differential expression following hydration vs. hydratation and RD (H-RD) treatment whereas 708 genes showed differential regulation for the diapaused eggs following these treatments. The comparison between hydrated quiescent and diapaused eggs showed marked differences, with 2,380 genes that were differentially regulated compared with 987 genes following H-RD. Hydrated quiescent and diapaused eggs were markedly different indicating differences in adaptation for long-term survival. Transport activity is highly up-regulated following H-RD and few genes were coincident between both kinds of eggs. With the quiescent eggs, the majority of genes were related to ion transport (mainly sodium), while the diapaused eggs showed a major diversity of transporters (amino acid transport, ion transport, acetylcholine or other molecules).

19.
PLoS Comput Biol ; 12(2): e1004691, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26914653

RESUMO

The Bioinformatics Open Source Conference (BOSC) is organized by the Open Bioinformatics Foundation (OBF), a nonprofit group dedicated to promoting the practice and philosophy of open source software development and open science within the biological research community. Since its inception in 2000, BOSC has provided bioinformatics developers with a forum for communicating the results of their latest efforts to the wider research community. BOSC offers a focused environment for developers and users to interact and share ideas about standards; software development practices; practical techniques for solving bioinformatics problems; and approaches that promote open science and sharing of data, results, and software. BOSC is run as a two-day special interest group (SIG) before the annual Intelligent Systems in Molecular Biology (ISMB) conference. BOSC 2015 took place in Dublin, Ireland, and was attended by over 125 people, about half of whom were first-time attendees. Session topics included "Data Science;" "Standards and Interoperability;" "Open Science and Reproducibility;" "Translational Bioinformatics;" "Visualization;" and "Bioinformatics Open Source Project Updates". In addition to two keynote talks and dozens of shorter talks chosen from submitted abstracts, BOSC 2015 included a panel, titled "Open Source, Open Door: Increasing Diversity in the Bioinformatics Open Source Community," that provided an opportunity for open discussion about ways to increase the diversity of participants in BOSC in particular, and in open source bioinformatics in general. The complete program of BOSC 2015 is available online at http://www.open-bio.org/wiki/BOSC_2015_Schedule.


Assuntos
Biologia Computacional/organização & administração , Congressos como Assunto , Humanos , Irlanda
20.
Mol Plant Pathol ; 17(2): 286-95, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25981957

RESUMO

The migratory endoparasitic nematode Bursaphelenchus xylophilus, which is the causal agent of pine wilt disease, has phytophagous and mycetophagous phases during its life cycle. This highly unusual feature distinguishes it from other plant-parasitic nematodes and requires profound changes in biology between modes. During the phytophagous stage, the nematode migrates within pine trees, feeding on the contents of parenchymal cells. Like other plant pathogens, B. xylophilus secretes effectors from pharyngeal gland cells into the host during infection. We provide the first description of changes in the morphology of these gland cells between juvenile and adult life stages. Using a comparative transcriptomics approach and an effector identification pipeline, we identify numerous novel parasitism genes which may be important for the mediation of interactions of B. xylophilus with its host. In-depth characterization of all parasitism genes using in situ hybridization reveals two major categories of detoxification proteins, those specifically expressed in either the pharyngeal gland cells or the digestive system. These data suggest that B. xylophilus incorporates effectors in a multilayer detoxification strategy in order to protect itself from host defence responses during phytophagy.


Assuntos
Genes de Helmintos , Inativação Metabólica/genética , Parasitos/genética , Pinus/parasitologia , Tylenchida/genética , Animais , Biologia Computacional , Regulação da Expressão Gênica , Estudos de Associação Genética , Proteínas de Helminto/metabolismo , Faringe/citologia , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...