Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Bot ; 74(9): 2860-2874, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-36633860

RESUMO

The ability of plants to respond to changes in the environment is crucial to their survival and reproductive success. The impact of increasing the atmospheric CO2 concentration (a[CO2]), mediated by behavioral and developmental responses of stomata, on crop performance remains a concern under all climate change scenarios, with potential impacts on future food security. To identify possible beneficial traits that could be exploited for future breeding, phenotypic variation in morphological traits including stomatal size and density, as well as physiological responses and, critically, the effect of growth [CO2] on these traits, was assessed in six wheat relative accessions (including Aegilops tauschii, Triticum turgidum ssp. Dicoccoides, and T. turgidum ssp. dicoccon) and five elite bread wheat T. aestivum cultivars. Exploiting a range of different species and ploidy, we identified key differences in photosynthetic capacity between elite hexaploid wheat and wheat relatives. We also report differences in the speed of stomatal responses which were found to be faster in wheat relatives than in elite cultivars, a trait that could be useful for enhanced photosynthetic carbon gain and water use efficiency. Furthermore, these traits do not all appear to be influenced by elevated [CO2], and determining the underlying genetics will be critical for future breeding programmes.


Assuntos
Dióxido de Carbono , Triticum , Triticum/genética , Melhoramento Vegetal , Fenótipo , Fotossíntese
2.
New Phytol ; 237(5): 1558-1573, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36519272

RESUMO

The wheat flag leaf is the main contributor of photosynthetic assimilates to developing grains. Understanding how canopy architecture strategies affect source strength and yield will aid improved crop design. We used an eight-founder population to investigate the genetic architecture of flag leaf area, length, width and angle in European wheat. For the strongest genetic locus identified, we subsequently created a near-isogenic line (NIL) pair for more detailed investigation across seven test environments. Genetic control of traits investigated was highly polygenic, with colocalisation of replicated quantitative trait loci (QTL) for one or more traits identifying 24 loci. For QTL QFll.niab-5A.1 (FLL5A), development of a NIL pair found the FLL5A+ allele commonly conferred a c. 7% increase in flag and second leaf length and a more erect leaf angle, resulting in higher flag and/or second leaf area. Increased FLL5A-mediated flag leaf length was associated with: (1) longer pavement cells and (2) larger stomata at lower density, with a trend for decreased maximum stomatal conductance (Gsmax ) per unit leaf area. For FLL5A, cell size rather than number predominantly determined leaf length. The observed trade-offs between leaf size and stomatal morphology highlight the need for future studies to consider these traits at the whole-leaf level.


Assuntos
Locos de Características Quantitativas , Triticum , Mapeamento Cromossômico , Triticum/anatomia & histologia , Locos de Características Quantitativas/genética , Folhas de Planta/anatomia & histologia , Fenótipo , Células Epidérmicas
3.
Microb Genom ; 8(10)2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36214662

RESUMO

The adaptive potential of plant fungal pathogens is largely governed by the gene content of a species, consisting of core and accessory genes across the pathogen isolate repertoire. To approximate the complete gene repertoire of a globally significant crop fungal pathogen, a pan genomic analysis was undertaken for Pyrenophora tritici-repentis (Ptr), the causal agent of tan (or yellow) spot disease in wheat. In this study, 15 new Ptr genomes were sequenced, assembled and annotated, including isolates from three races not previously sequenced. Together with 11 previously published Ptr genomes, a pangenome for 26 Ptr isolates from Australia, Europe, North Africa and America, representing nearly all known races, revealed a conserved core-gene content of 57 % and presents a new Ptr resource for searching natural homologues (orthologues not acquired by horizontal transfer from another species) using remote protein structural homology. Here, we identify for the first time a non-synonymous mutation in the Ptr necrotrophic effector gene ToxB, multiple copies of the inactive toxb within an isolate, a distant natural Pyrenophora homologue of a known Parastagonopora nodorum necrotrophic effector (SnTox3), and clear genomic break points for the ToxA effector horizontal transfer region. This comprehensive genomic analysis of Ptr races includes nine isolates sequenced via long read technologies. Accordingly, these resources provide a more complete representation of the species, and serve as a resource to monitor variations potentially involved in pathogenicity.


Assuntos
Micotoxinas , Triticum , Ascomicetos , Interações Hospedeiro-Patógeno/genética , Micotoxinas/genética , Micotoxinas/metabolismo , Doenças das Plantas/microbiologia , Homologia Estrutural de Proteína , Triticum/genética , Triticum/metabolismo , Triticum/microbiologia
4.
Crop Sci ; 62(3): 965-981, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35915786

RESUMO

Association mapping using crop cultivars allows identification of genetic loci of direct relevance to breeding. Here, 150 U.K. wheat (Triticum aestivum L.) cultivars genotyped with 23,288 single nucleotide polymorphisms (SNPs) were used for genome-wide association studies (GWAS) using historical phenotypic data for grain protein content, Hagberg falling number (HFN), test weight, and grain yield. Power calculations indicated experimental design would enable detection of quantitative trait loci (QTL) explaining ≥20% of the variation (PVE) at a relatively high power of >80%, falling to 40% for detection of a SNP with an R2 ≥ .5 with the same QTL. Genome-wide association studies identified marker-trait associations for all four traits. For HFN (h 2 = .89), six QTL were identified, including a major locus on chromosome 7B explaining 49% PVE and reducing HFN by 44 s. For protein content (h 2 = 0.86), 10 QTL were found on chromosomes 1A, 2A, 2B, 3A, 3B, and 6B, together explaining 48.9% PVE. For test weight, five QTL were identified (one on 1B and four on 3B; 26.3% PVE). Finally, 14 loci were identified for grain yield (h 2 = 0.95) on eight chromosomes (1A, 2A, 2B, 2D, 3A, 5B, 6A, 6B; 68.1% PVE), of which five were located within 16 Mbp of genetic regions previously identified as under breeder selection in European wheat. Our study demonstrates the utility of exploiting historical crop datasets, identifying genomic targets for independent validation, and ultimately for wheat genetic improvement.

5.
Front Plant Sci ; 13: 851079, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35860541

RESUMO

Recent technological advances in next-generation sequencing (NGS) technologies have dramatically reduced the cost of DNA sequencing, allowing species with large and complex genomes to be sequenced. Although bread wheat (Triticum aestivum L.) is one of the world's most important food crops, efficient exploitation of molecular marker-assisted breeding approaches has lagged behind that achieved in other crop species, due to its large polyploid genome. However, an international public-private effort spanning 9 years reported over 65% draft genome of bread wheat in 2014, and finally, after more than a decade culminated in the release of a gold-standard, fully annotated reference wheat-genome assembly in 2018. Shortly thereafter, in 2020, the genome of assemblies of additional 15 global wheat accessions was released. As a result, wheat has now entered into the pan-genomic era, where basic resources can be efficiently exploited. Wheat genotyping with a few hundred markers has been replaced by genotyping arrays, capable of characterizing hundreds of wheat lines, using thousands of markers, providing fast, relatively inexpensive, and reliable data for exploitation in wheat breeding. These advances have opened up new opportunities for marker-assisted selection (MAS) and genomic selection (GS) in wheat. Herein, we review the advances and perspectives in wheat genetics and genomics, with a focus on key traits, including grain yield, yield-related traits, end-use quality, and resistance to biotic and abiotic stresses. We also focus on reported candidate genes cloned and linked to traits of interest. Furthermore, we report on the improvement in the aforementioned quantitative traits, through the use of (i) clustered regularly interspaced short-palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9)-mediated gene-editing and (ii) positional cloning methods, and of genomic selection. Finally, we examine the utilization of genomics for the next-generation wheat breeding, providing a practical example of using in silico bioinformatics tools that are based on the wheat reference-genome sequence.

6.
New Phytol ; 235(5): 1743-1756, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35586964

RESUMO

Although stomata are typically found in greater numbers on the abaxial surface, wheat flag leaves have greater densities on the adaxial surface. We determine the impact of this less common stomatal patterning on gaseous fluxes using a novel chamber that simultaneously measures both leaf surfaces. Using a combination of differential illuminations and CO2 concentrations at each leaf surface, we found that mesophyll cells associated with the adaxial leaf surface have a higher photosynthetic capacity than those associated with the abaxial leaf surface, which is supported by an increased stomatal conductance (driven by differences in stomatal density). When vertical gas flux at the abaxial leaf surface was blocked, no compensation by adaxial stomata was observed, suggesting each surface operates independently. Similar stomatal kinetics suggested some co-ordination between the two surfaces, but factors other than light intensity played a role in these responses. Higher photosynthetic capacity on the adaxial surface facilitates greater carbon assimilation, along with higher adaxial stomatal conductance, which would also support greater evaporative leaf cooling to maintain optimal leaf temperatures for photosynthesis. Furthermore, abaxial gas exchange contributed c. 50% to leaf photosynthesis and therefore represents an important contributor to overall leaf gas exchange.


Assuntos
Estômatos de Plantas , Triticum , Dióxido de Carbono/farmacologia , Gases , Fotossíntese/fisiologia , Folhas de Planta/fisiologia , Estômatos de Plantas/fisiologia
7.
Theor Appl Genet ; 135(2): 667-678, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34778903

RESUMO

KEY MESSAGE: Variety age and population structure detect novel QTL for yield and adaptation in wheat and barley without the need to phenotype. The process of crop breeding over the last century has delivered new varieties with increased genetic gains, resulting in higher crop performance and yield. However, in many cases, the alleles and genomic regions underpinning this success remain unknown. This is partly due to the difficulty of generating sufficient phenotypic data on large numbers of historical varieties to enable such analyses. Here we demonstrate the ability to circumvent such bottlenecks by identifying genomic regions selected over 100 years of crop breeding using age of a variety as a surrogate for yield. Rather than collecting phenotype data, we deployed 'environmental genome-wide association scans' (EnvGWAS) based on variety age in two of the world's most important crops, wheat and barley, and detected strong signals of selection across both genomes. EnvGWAS identified 16 genomic regions in barley and 10 in wheat with contrasting patterns between spring and winter types of the two crops. To further examine changes in genome structure, we used the genomic relationship matrix of the genotypic data to derive eigenvectors for analysis in EigenGWAS. This detected seven major chromosomal introgressions that contributed to adaptation in wheat. EigenGWAS and EnvGWAS based on variety age avoid costly phenotyping and facilitate the identification of genomic tracts that have been under selection during breeding. Our results demonstrate the potential of using historical cultivar collections coupled with genomic data to identify chromosomal regions under selection and may help guide future plant breeding strategies to maximise the rate of genetic gain and adaptation.


Assuntos
Hordeum , Triticum , Estudo de Associação Genômica Ampla , Hordeum/genética , Fenótipo , Melhoramento Vegetal , Polimorfismo de Nucleotídeo Único , Triticum/genética
8.
Theor Appl Genet ; 135(3): 741-753, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34821981

RESUMO

Wheat (Triticum aestivum L.) is a global commodity, and its production is a key component underpinning worldwide food security. Yellow rust, also known as stripe rust, is a wheat disease caused by the fungus Puccinia striiformis Westend f. sp. tritici (Pst), and results in yield losses in most wheat growing areas. Recently, the rapid global spread of genetically diverse sexually derived Pst races, which have now largely replaced the previous clonally propagated slowly evolving endemic populations, has resulted in further challenges for the protection of global wheat yields. However, advances in the application of genomics approaches, in both the host and pathogen, combined with classical genetic approaches, pathogen and disease monitoring, provide resources to help increase the rate of genetic gain for yellow rust resistance via wheat breeding while reducing the carbon footprint of the crop. Here we review key elements in the evolving battle between the pathogen and host, with a focus on solutions to help protect future wheat production from this globally important disease.


Assuntos
Basidiomycota , Triticum , Genômica , Melhoramento Vegetal , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Triticum/genética , Triticum/microbiologia
9.
Theor Appl Genet ; 135(1): 301-319, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34837509

RESUMO

KEY MESSAGE: Analysis of a wheat multi-founder population identified 14 yellow rust resistance QTL. For three of the four most significant QTL, haplotype analysis indicated resistance alleles were rare in European wheat. Stripe rust, or yellow rust (YR), is a major fungal disease of wheat (Triticum aestivum) caused by Puccinia striiformis Westend f. sp. tritici (Pst). Since 2011, the historically clonal European Pst races have been superseded by the rapid incursion of genetically diverse lineages, reducing the resistance of varieties previously showing durable resistance. Identification of sources of genetic resistance to such races is a high priority for wheat breeding. Here we use a wheat eight-founder multi-parent population genotyped with a 90,000 feature single nucleotide polymorphism array to genetically map YR resistance to such new Pst races. Genetic analysis of five field trials at three UK sites identified 14 quantitative trait loci (QTL) conferring resistance. Of these, four highly significant loci were consistently identified across all test environments, located on chromosomes 1A (QYr.niab-1A.1), 2A (QYr.niab-2A.1), 2B (QYr.niab-2B.1) and 2D (QYr.niab-2D.1), together explaining ~ 50% of the phenotypic variation. Analysis of these four QTL in two-way and three-way combinations showed combinations conferred greater resistance than single QTL, and genetic markers were developed that distinguished resistant and susceptible alleles. Haplotype analysis in a collection of wheat varieties found that the haplotypes associated with YR resistance at three of these four major loci were rare (≤ 7%) in European wheat, highlighting their potential utility for future targeted improvement of disease resistance. Notably, the physical interval for QTL QYr.niab-2B.1 contained five nucleotide-binding leucine-rich repeat candidate genes with integrated BED domains, of which two corresponded to the cloned resistance genes Yr7 and Yr5/YrSp.


Assuntos
Resistência à Doença/genética , Doenças das Plantas/microbiologia , Puccinia/fisiologia , Triticum/genética , Genótipo , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Polimorfismo de Nucleotídeo Único , Puccinia/imunologia , Locos de Características Quantitativas , Triticum/imunologia , Triticum/microbiologia
10.
Genome Biol ; 22(1): 137, 2021 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-33957956

RESUMO

BACKGROUND: Selection has dramatically shaped genetic and phenotypic variation in bread wheat. We can assess the genomic basis of historical phenotypic changes, and the potential for future improvement, using experimental populations that attempt to undo selection through the randomizing effects of recombination. RESULTS: We bred the NIAB Diverse MAGIC multi-parent population comprising over 500 recombinant inbred lines, descended from sixteen historical UK bread wheat varieties released between 1935 and 2004. We sequence the founders' genes and promoters by capture, and the MAGIC population by low-coverage whole-genome sequencing. We impute 1.1 M high-quality SNPs that are over 99% concordant with array genotypes. Imputation accuracy only marginally improves when including the founders' genomes as a haplotype reference panel. Despite capturing 73% of global wheat genetic polymorphism, 83% of genes cluster into no more than three haplotypes. We phenotype 47 agronomic traits over 2 years and map 136 genome-wide significant associations, concentrated at 42 genetic loci with large and often pleiotropic effects. Around half of these overlap known quantitative trait loci. Most traits exhibit extensive polygenicity, as revealed by multi-locus shrinkage modelling. CONCLUSIONS: Our results are consistent with a gene pool of low haplotypic diversity, containing few novel loci of large effect. Most past, and projected future, phenotypic changes arising from existing variation involve fine-scale shuffling of a few haplotypes to recombine dozens of polygenic alleles of small effect. Moreover, extensive pleiotropy means selection on one trait will have unintended consequences, exemplified by the negative trade-off between yield and protein content, unless selection and recombination can break unfavorable trait-trait associations.


Assuntos
Variação Genética , Haplótipos/genética , Herança Multifatorial/genética , Melhoramento Vegetal , Triticum/genética , Mapeamento Cromossômico , Segregação de Cromossomos/genética , Deleção de Genes , Genoma de Planta , Estudo de Associação Genômica Ampla , Fenótipo , Proteínas de Plantas/metabolismo , Locos de Características Quantitativas/genética , Característica Quantitativa Herdável
11.
Theor Appl Genet ; 134(6): 1645-1662, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33900415

RESUMO

In the coming decades, larger genetic gains in yield will be necessary to meet projected demand, and this must be achieved despite the destabilizing impacts of climate change on crop production. The root systems of crops capture the water and nutrients needed to support crop growth, and improved root systems tailored to the challenges of specific agricultural environments could improve climate resiliency. Each component of root initiation, growth and development is controlled genetically and responds to the environment, which translates to a complex quantitative system to navigate for the breeder, but also a world of opportunity given the right tools. In this review, we argue that it is important to know more about the 'hidden half' of crop plants and hypothesize that crop improvement could be further enhanced using approaches that directly target selection for root system architecture. To explore these issues, we focus predominantly on bread wheat (Triticum aestivum L.), a staple crop that plays a major role in underpinning global food security. We review the tools available for root phenotyping under controlled and field conditions and the use of these platforms alongside modern genetics and genomics resources to dissect the genetic architecture controlling the wheat root system. To contextualize these advances for applied wheat breeding, we explore questions surrounding which root system architectures should be selected for, which agricultural environments and genetic trait configurations of breeding populations are these best suited to, and how might direct selection for these root ideotypes be implemented in practice.


Assuntos
Mudança Climática , Melhoramento Vegetal , Raízes de Plantas/fisiologia , Triticum/genética , Produtos Agrícolas/genética , Genes de Plantas , Fenótipo , Raízes de Plantas/genética , Triticum/fisiologia
12.
PLoS One ; 16(3): e0248184, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33684152

RESUMO

Fusarium head blight (FHB) is a disease of wheat (Triticum aestivum L.) that causes major yield losses in South America, as well as many other wheat growing regions around the world. FHB results in low quality, contaminated grain due to the production of mycotoxins such as deoxynivalenol (DON). In Brazil, FHB outbreaks are increasing in frequency and are currently controlled by fungicides which are costly and potentially harmful to the wider environment. To identify the genetic basis of resistance to FHB in Brazilian wheat, two mapping populations (Anahuac 75 × BR 18-Terena and BR 18-Terena × BRS 179) segregating for FHB resistance were phenotyped and quantitative trait loci (QTL) analysis was undertaken to identify genomic regions associated with FHB-related traits. A total of 14 QTL associated with FHB visual symptoms were identified, each of which explained 3.7-17.3% of the phenotypic variance. Two of these QTL were stable across environments. This suggests FHB resistance in Anahuac 75, BR 18-Terena and BRS 179 is controlled by multiple genetic loci that confer relatively minor differences in resistance. A major, novel QTL associated with DON accumulation was also identified on chromosome 4B (17.8% of the phenotypic variance), as well as a major QTL associated with thousand-grain weight on chromosome 6B (16.8% phenotypic variance). These QTL could be useful breeding targets, when pyramided with major sources of resistance such as Fhb1, to improve grain quality and reduce the reliance on fungicides in Brazil and other countries affected by FHB.


Assuntos
Cromossomos de Plantas/metabolismo , Resistência à Doença/genética , Fusarium , Doenças das Plantas/genética , Locos de Características Quantitativas , Triticum/genética , Brasil , Doenças das Plantas/microbiologia , Triticum/microbiologia
13.
Theor Appl Genet ; 134(5): 1435-1454, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33712876

RESUMO

KEY MESSAGE: Quantitative trait locus (QTL) mapping of 15 yield component traits in a German multi-founder population identified eight QTL each controlling ≥2 phenotypes, including the genetic loci Rht24, WAPO-A1 and WAPO-B1. Grain yield in wheat (Triticum aestivum L.) is a polygenic trait representing the culmination of many developmental processes and their interactions with the environment. Toward maintaining genetic gains in yield potential, 'reductionist approaches' are commonly undertaken by which the genetic control of yield components, that collectively determine yield, are established. Here we use an eight-founder German multi-parental wheat population to investigate the genetic control and phenotypic trade-offs between 15 yield components. Increased grains per ear was significantly positively correlated with the number of fertile spikelets per ear and negatively correlated with the number of infertile spikelets. However, as increased grain number and fertile spikelet number per ear were significantly negatively correlated with thousand grain weight, sink strength limitations were evident. Genetic mapping identified 34 replicated quantitative trait loci (QTL) at two or more test environments, of which 24 resolved into eight loci each controlling two or more traits-termed here 'multi-trait QTL' (MT-QTL). These included MT-QTL associated with previously cloned genes controlling semi-dwarf plant stature, and with the genetic locus Reduced height 24 (Rht24) that further modulates plant height. Additionally, MT-QTL controlling spikelet number traits were located to chromosome 7A encompassing the gene WHEAT ORTHOLOG OF APO1 (WAPO-A1), and to its homoeologous location on chromosome 7B containing WAPO-B1. The genetic loci identified in this study, particularly those that potentially control multiple yield components, provide future opportunities for the targeted investigation of their underlying genes, gene networks and phenotypic trade-offs, in order to underpin further genetic gains in yield.


Assuntos
Cromossomos de Plantas/genética , Genética Populacional , Genoma de Planta , Proteínas de Plantas/genética , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Triticum/crescimento & desenvolvimento , Mapeamento Cromossômico/métodos , Regulação da Expressão Gênica de Plantas , Estudo de Associação Genômica Ampla , Melhoramento Vegetal , Proteínas de Plantas/metabolismo , Triticum/classificação , Triticum/genética , Triticum/metabolismo
14.
Plant Genome ; 14(1): e20081, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33543599

RESUMO

Foxtail millet [Setaria italica (L.) P. Beauv.] is the second most important millet species globally and is adapted to cultivation in diverse environments. Like its wild progenitor, green foxtail [S. viridis (L.) P. Beauv.], it is a model species for C4 photosynthetic pathways and stress tolerance genes in related bioenergy crops. We addressed questions regarding the evolution and spread of foxtail millet through a population genomic study of landraces from across its cultivated range in Europe, Asia, and Africa. We sought to determine population genomic structure and the relationship of domesticated lineages relative to green foxtail. Further, we aimed to identify genes involved in environmental stress tolerance that have undergone differential selection between geographical and genetic groups. Foxtail millet landrace accessions (n = 328) and green foxtail accessions (n = 12) were sequenced by genotyping-by-sequencing (GBS). After filtering, 5,677 single nucleotide polymorphisms (SNPs) were retained for the combined foxtail millet-green foxtail dataset and 5,020 for the foxtail millet dataset. We extended geographic coverage of green foxtail by including previously published GBS sequence tags, yielding a 4,515-SNP dataset for phylogenetic reconstruction. All foxtail millet samples were monophyletic relative to green foxtail, suggesting a single origin of foxtail millet, although no group of foxtail millet was clearly the most ancestral. Four genetic clusters were found within foxtail millet, each with a distinctive geographical distribution. These results, together with archaeobotanical evidence, suggest plausible routes of spread of foxtail millet. Selection scans identified nine candidate genes potentially involved in environmental adaptations, particularly to novel climates encountered, as domesticated foxtail millet spread to new altitudes and latitudes.


Assuntos
Setaria (Planta) , África , Ásia , Europa (Continente) , Genótipo , Metagenômica , Filogenia , Setaria (Planta)/genética
15.
Theor Appl Genet ; 134(1): 125-142, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33047219

RESUMO

KEY MESSAGE: We identified allelic variation at two major loci, QSnb.nmbu-2A.1 and QSnb.nmbu-5A.1, showing consistent and additive effects on SNB field resistance. Validation of QSnb.nmbu-2A.1 across genetic backgrounds further highlights its usefulness for marker-assisted selection. Septoria nodorum blotch (SNB) is a disease of wheat (Triticum aestivum and T. durum) caused by the necrotrophic fungal pathogen Parastagonospora nodorum. SNB resistance is a typical quantitative trait, controlled by multiple quantitative trait loci (QTL) of minor effect. To achieve increased plant resistance, selection for resistance alleles and/or selection against susceptibility alleles must be undertaken. Here, we performed genetic analysis of SNB resistance using an eight-founder German Multiparent Advanced Generation Inter-Cross (MAGIC) population, termed BMWpop. Field trials and greenhouse testing were conducted over three seasons in Norway, with genetic analysis identifying ten SNB resistance QTL. Of these, two QTL were identified over two seasons: QSnb.nmbu-2A.1 on chromosome 2A and QSnb.nmbu-5A.1 on chromosome 5A. The chromosome 2A BMWpop QTL co-located with a robust SNB resistance QTL recently identified in an independent eight-founder MAGIC population constructed using varieties released in the United Kingdom (UK). The validation of this SNB resistance QTL in two independent multi-founder mapping populations, regardless of the differences in genetic background and agricultural environment, highlights the value of this locus in SNB resistance breeding. The second robust QTL identified in the BMWpop, QSnb.nmbu-5A.1, was not identified in the UK MAGIC population. Combining resistance alleles at both loci resulted in additive effects on SNB resistance. Therefore, using marker assisted selection to combine resistance alleles is a promising strategy for improving SNB resistance in wheat breeding. Indeed, the multi-locus haplotypes determined in this study provide markers for efficient tracking of these beneficial alleles in future wheat genetics and breeding activities.


Assuntos
Ascomicetos/patogenicidade , Resistência à Doença/genética , Doenças das Plantas/genética , Locos de Características Quantitativas , Triticum/genética , Alelos , Haplótipos , Noruega , Fenótipo , Melhoramento Vegetal , Doenças das Plantas/microbiologia , Triticum/microbiologia
16.
Plant Biotechnol J ; 19(1): 26-34, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32996672

RESUMO

Transgressive segregation and heterosis are the reasons that plant breeding works. Molecular explanations for both phenomena have been suggested and play a contributing role. However, it is often overlooked by molecular genetic researchers that transgressive segregation and heterosis are most simply explained by dispersion of favorable alleles. Therefore, advances in molecular biology will deliver the most impact on plant breeding when integrated with sources of heritable trait variation - and this will be best achieved within a quantitative genetics framework. An example of the power of quantitative approaches is the implementation of genomic selection, which has recently revolutionized animal breeding. Genomic selection is now being applied to both hybrid and inbred crops and is likely to be the major source of improvement in plant breeding practice over the next decade. Breeders' ability to efficiently apply genomic selection methodologies is due to recent technology advances in genotyping and sequencing. Furthermore, targeted integration of additional molecular data (such as gene expression, gene copy number and methylation status) into genomic prediction models may increase their performance. In this review, we discuss and contextualize a suite of established quantitative genetics themes relating to hybrid vigour, transgressive segregation and their central relevance to plant breeding, with the aim of informing crop researchers outside of the quantitative genetics discipline of their relevance and importance to crop improvement. Better understanding between molecular and quantitative disciplines will increase the potential for further improvements in plant breeding methodologies and so help underpin future food security.


Assuntos
Vigor Híbrido , Depressão por Endogamia , Melhoramento Vegetal , Produtos Agrícolas , Vigor Híbrido/genética , Endogamia , Fenótipo
17.
Phytopathology ; 111(6): 906-920, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33245254

RESUMO

The fungus Parastagonospora nodorum is a narrow host range necrotrophic fungal pathogen that causes Septoria nodorum blotch (SNB) of cereals, most notably wheat (Triticum aestivum). Although commonly observed on wheat seedlings, P. nodorum infection has the greatest effect on the adult crop. It results in leaf blotch, which limits photosynthesis and thus crop growth and yield. It can also affect the wheat ear, resulting in glume blotch, which directly affects grain quality. Reports of P. nodorum fungicide resistance, the increasing use of reduced tillage agronomic practices, and high evolutionary potential of the pathogen, combined with changes in climate and agricultural environments, mean that genetic resistance to SNB remains a high priority in many regions of wheat cultivation. In this review, we summarize current information on P. nodorum population structure and its implication for improved SNB management. We then review recent advances in the genetics of host resistance to P. nodorum and the necrotrophic effectors it secretes during infection, integrating the genomic positions of these genetic loci by using the recently released wheat reference genome assembly. Finally, we discuss the genetic and genomic tools now available for SNB resistance breeding and consider future opportunities and challenges in crop health management by using the wheat-P. nodorum interaction as a model.


Assuntos
Doenças das Plantas , Triticum , Ascomicetos , Gerenciamento Clínico , Resistência à Doença/genética , Melhoramento Vegetal , Locos de Características Quantitativas , Triticum/genética
18.
BMC Plant Biol ; 20(1): 398, 2020 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-32854622

RESUMO

BACKGROUND: Wheat blast, caused by Magnaporthe oryzae Triticum (MoT) pathotype, is a global threat to wheat (Triticum aestivum L.) production. Few blast resistance (R) genes have been identified to date, therefore assessing potential sources of resistance in wheat is important. The Brazilian wheat cultivar BR 18-Terena is considered one of the best sources of resistance to blast and has been widely used in Brazilian breeding programmes, however the underlying genetics of this resistance are unknown. RESULTS: BR 18-Terena was used as the common parent in the development of two recombinant inbred line (RIL) F6 populations with the Brazilian cultivars Anahuac 75 and BRS 179. Populations were phenotyped for resistance at the seedling and heading stage using the sequenced MoT isolate BR32, with transgressive segregation being observed. Genetic maps containing 1779 and 1318 markers, were produced for the Anahuac 75 × BR 18-Terena and BR 18-Terena × BRS 179 populations, respectively. Five quantitative trait loci (QTL) associated with seedling resistance, on chromosomes 2B, 4B (2 QTL), 5A and 6A, were identified, as were four QTL associated with heading stage resistance (1A, 2B, 4A and 5A). Seedling and heading stage QTL did not co-locate, despite a significant positive correlation between these traits, indicating that resistance at these developmental stages is likely to be controlled by different genes. BR 18-Terena provided the resistant allele for six QTL, at both developmental stages, with the largest phenotypic effect conferred by a QTL being 24.8% suggesting that BR 18-Terena possesses quantitative resistance. Haplotype analysis of 100 Brazilian wheat cultivars indicates that 11.0% of cultivars already possess a BR 18-Terena-like haplotype for more than one of the identified heading stage QTL. CONCLUSIONS: This study suggests that BR 18-Terena possesses quantitative resistance to wheat blast, with nine QTL associated with resistance at either the seedling or heading stage being detected. Wheat blast resistance is also largely tissue-specific. Identification of durable quantitative resistances which can be combined with race-specific R gene-mediated resistance is critical to effectively control wheat blast. Collectively, this work facilitates marker-assisted selection to develop new varieties for cultivation in regions at risk from this emerging disease.


Assuntos
Ascomicetos/fisiologia , Resistência à Doença/genética , Doenças das Plantas/genética , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Triticum/genética , Brasil , Melhoramento Vegetal , Doenças das Plantas/microbiologia , Triticum/microbiologia
19.
Genes (Basel) ; 11(8)2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32759792

RESUMO

Zymoseptoria tritici is the causative fungal pathogen of septoria tritici blotch (STB) disease of wheat (Triticum aestivum L.) that continuously threatens wheat crops in Ireland and throughout Europe. Under favorable conditions, STB can cause up to 50% yield losses if left untreated. STB is commonly controlled with fungicides; however, a combination of Z. tritici populations developing fungicide resistance and increased restrictions on fungicide use in the EU has led to farmers relying on fewer active substances. Consequently, this serves to drive the emergence of Z. tritici resistance against the remaining chemistries. In response, the use of resistant wheat varieties provides a more sustainable disease management strategy. However, the number of varieties offering an adequate level of resistance against STB is limited. Therefore, new sources of resistance or improved stacking of existing resistance loci are needed to develop varieties with superior agronomic performance. Here, we identified quantitative trait loci (QTL) for STB resistance in the eight-founder "NIAB Elite MAGIC" winter wheat population. The population was screened for STB response in the field under natural infection for three seasons from 2016 to 2018. Twenty-five QTL associated with STB resistance were identified in total. QTL either co-located with previously reported QTL or represent new loci underpinning STB resistance. The genomic regions identified and the linked genetic markers serve as useful resources for STB resistance breeding, supporting rapid selection of favorable alleles for the breeding of new wheat cultivars with improved STB resistance.


Assuntos
Resistência à Doença , Locos de Características Quantitativas , Triticum/genética , Ascomicetos/patogenicidade , Melhoramento Vegetal , Polimorfismo de Nucleotídeo Único , Triticum/imunologia , Triticum/microbiologia
20.
Front Microbiol ; 11: 1280, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32612592

RESUMO

The necrotrophic fungal pathogen Parastagonospora nodorum causes Septoria nodorum blotch (SNB), which is one of the dominating leaf blotch diseases of wheat in Norway. A total of 165 P. nodorum isolates were collected from three wheat growing regions in Norway from 2015 to 2017. These isolates, as well as nine isolates from other countries, were analyzed for genetic variation using 20 simple sequence repeat (SSR) markers. Genetic analysis of the isolate collection indicated that the P. nodorum pathogen population infecting Norwegian spring and winter wheat underwent regular sexual reproduction and exhibited a high level of genetic diversity, with no genetic subdivisions between sampled locations, years or host cultivars. A high frequency of the presence of necrotrophic effector (NE) gene SnToxA was found in Norwegian P. nodorum isolates compared to other parts of Europe, and we hypothesize that the SnToxA gene is the major virulence factor among the three known P. nodorum NE genes (SnToxA, SnTox1, and SnTox3) in the Norwegian pathogen population. While the importance of SNB has declined in much of Europe, Norway has remained as a P. nodorum hotspot, likely due at least in part to local adaptation of the pathogen population to ToxA sensitive Norwegian spring wheat cultivars.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...