Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(7)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38612777

RESUMO

High-grade gliomas (HGGs) and glioblastoma multiforme (GBM) are characterized by a heterogeneous and aggressive population of tissue-infiltrating cells that promote both destructive tissue remodeling and aberrant vascularization of the brain. The formation of defective and permeable blood vessels and microchannels and destructive tissue remodeling prevent efficient vascular delivery of pharmacological agents to tumor cells and are the significant reason why therapeutic chemotherapy and immunotherapy intervention are primarily ineffective. Vessel-forming endothelial cells and microchannel-forming glial cells that recapitulate vascular mimicry have both infiltration and destructive remodeling tissue capacities. The transmembrane protein TMEM230 (C20orf30) is a master regulator of infiltration, sprouting of endothelial cells, and microchannel formation of glial and phagocytic cells. A high level of TMEM230 expression was identified in patients with HGG, GBM, and U87-MG cells. In this study, we identified candidate genes and molecular pathways that support that aberrantly elevated levels of TMEM230 play an important role in regulating genes associated with the initial stages of cell infiltration and blood vessel and microchannel (also referred to as tumor microtubule) formation in the progression from low-grade to high-grade gliomas. As TMEM230 regulates infiltration, vascularization, and tissue destruction capacities of diverse cell types in the brain, TMEM230 is a promising cancer target for heterogeneous HGG tumors.


Assuntos
Glioblastoma , Glioma , Doença de Parkinson , Humanos , Glioblastoma/genética , Proteínas de Membrana/genética , Células Endoteliais , Angiogênese , Glioma/genética , Neuroglia , Neovascularização Patológica/genética
2.
BMC Bioinformatics ; 24(1): 445, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38012590

RESUMO

INTRODUCTION: Single-cell (SC) gene expression analysis is crucial to dissect the complex cellular heterogeneity of solid tumors, which is one of the main obstacles for the development of effective cancer treatments. Such tumors typically contain a mixture of cells with aberrant genomic and transcriptomic profiles affecting specific sub-populations that might have a pivotal role in cancer progression, whose identification eludes bulk RNA-sequencing approaches. We present scMuffin, an R package that enables the characterization of cell identity in solid tumors on the basis of a various and complementary analyses on SC gene expression data. RESULTS: scMuffin provides a series of functions to calculate qualitative and quantitative scores, such as: expression of marker sets for normal and tumor conditions, pathway activity, cell state trajectories, Copy Number Variations, transcriptional complexity and proliferation state. Thus, scMuffin facilitates the combination of various evidences that can be used to distinguish normal and tumoral cells, define cell identities, cluster cells in different ways, link genomic aberrations to phenotypes and identify subtle differences between cell subtypes or cell states. We analysed public SC expression datasets of human high-grade gliomas as a proof-of-concept to show the value of scMuffin and illustrate its user interface. Nevertheless, these analyses lead to interesting findings, which suggest that some chromosomal amplifications might underlie the invasive tumor phenotype and the presence of cells that possess tumor initiating cells characteristics. CONCLUSIONS: The analyses offered by scMuffin and the results achieved in the case study show that our tool helps addressing the main challenges in the bioinformatics analysis of SC expression data from solid tumors.


Assuntos
Variações do Número de Cópias de DNA , Neoplasias , Humanos , Análise da Expressão Gênica de Célula Única , Neoplasias/genética , Transcriptoma , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos
3.
Front Cell Neurosci ; 15: 703431, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34867197

RESUMO

Glioblastomas (GBM) are the most aggressive tumors originating in the brain. Histopathologic features include circuitous, disorganized, and highly permeable blood vessels with intermittent blood flow. These features contribute to the inability to direct therapeutic agents to tumor cells. Known targets for anti-angiogenic therapies provide minimal or no effect in overall survival of 12-15 months following diagnosis. Identification of novel targets therefore remains an important goal for effective treatment of highly vascularized tumors such as GBM. We previously demonstrated in zebrafish that a balanced level of expression of the transmembrane protein TMEM230/C20ORF30 was required to maintain normal blood vessel structural integrity and promote proper vessel network formation. To investigate whether TMEM230 has a role in the pathogenesis of GBM, we analyzed its prognostic value in patient tumor gene expression datasets and performed cell functional analysis. TMEM230 was found necessary for growth of U87-MG cells, a model of human GBM. Downregulation of TMEM230 resulted in loss of U87 migration, substratum adhesion, and re-passaging capacity. Conditioned media from U87 expressing endogenous TMEM230 induced sprouting and tubule-like structure formation of HUVECs. Moreover, TMEM230 promoted vascular mimicry-like behavior of U87 cells. Gene expression analysis of 702 patients identified that TMEM230 expression levels distinguished high from low grade gliomas. Transcriptomic analysis of patients with gliomas revealed molecular pathways consistent with properties observed in U87 cell assays. Within low grade gliomas, elevated TMEM230 expression levels correlated with reduced overall survival independent from tumor subtype. Highest level of TMEM230 correlated with glioblastoma and ATP-dependent microtubule kinesin motor activity, providing a direction for future therapeutic intervention. Our studies support that TMEM230 has both glial tumor and endothelial cell intracellular and extracellular functions. Elevated levels of TMEM230 promote glial tumor cell migration, extracellular scaffold remodeling, and hypervascularization and abnormal formation of blood vessels. Downregulation of TMEM230 expression may inhibit both low grade glioma and glioblastoma tumor progression and promote normalization of abnormally formed blood vessels. TMEM230 therefore is both a promising anticancer and antiangiogenic therapeutic target for inhibiting GBM tumor cells and tumor-driven angiogenesis.

4.
Front Cell Dev Biol ; 8: 559554, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33102470

RESUMO

Heparan sulfate (HS) is a glycosaminoglycan found mainly in its protein-conjugated form at the cell surface and the extracellular matrix. Its high sulfation degree mediates functional interactions with positively charged amino acids in proteins. 2-O sulfation of iduronic acid and 3-O sulfation of glucosamine in HS are mediated by the sulfotransferases HS2ST and HS3ST, respectively, which are dysregulated in several cancers. Both sulfotransferases regulate breast cancer cell viability and invasion, but their role in cancer stem cells (CSCs) is unknown. Breast CSCs express characteristic markers such as CD44+/CD24-/low , CD133 and ALDH1 and are involved in tumor initiation, formation, and recurrence. We studied the influence of HS2ST1 and HS3ST2 overexpression on the CSC phenotype in breast cancer cell lines representative of the triple-negative (MDA-MB-231) and hormone-receptor positive subtype (MCF-7). The CD44+/CD24-/low phenotype was significantly reduced in MDA-MB-231 cells after overexpression of both enzymes, remaining unaltered in MCF-7 cells. ALDH1 activity was increased after HS2ST1 and HS3ST2 overexpression in MDA-MB-231 cells and reduced after HS2ST1 overexpression in MCF-7 cells. Colony and spheroid formation were increased after HS2ST1 and HS3ST2 overexpression in MCF-7 cells. Moreover, MDA-MB-231 cells overexpressing HS2ST1 formed more colonies and could not generate spheres. The phenotypic changes were associated with complex changes in the expression of the stemness-associated notch and Wnt-signaling pathways constituents, syndecans, heparanase and Sulf1. The results improve our understanding of breast CSC function and mark a subtype-specific impact of HS modifications on the CSC phenotype of triple-negative and hormone receptor positive breast cancer model cell lines.

5.
Front Oncol ; 10: 774, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32477959

RESUMO

The heparan sulfate proteoglycan Syndecan-1 binds cytokines, morphogens and extracellular matrix components, regulating cancer stem cell properties and invasiveness. Syndecan-1 is modulated by the heparan sulfate-degrading enzyme heparanase, but the underlying regulatory mechanisms are only poorly understood. In colon cancer pathogenesis, complex changes occur in the expression pattern of Syndecan-1 and heparanase during progression from well-differentiated to undifferentiated tumors. Loss of Syndecan-1 and increased expression of heparanase are associated with a change in phenotypic plasticity and an increase in invasiveness, metastasis and dedifferentiation. Here we investigated the regulatory and functional interplay of Syndecan-1 and heparanase employing siRNA-mediated silencing and plasmid-based overexpression approaches in the human colon cancer cell line Caco2. Heparanase expression and activity were upregulated in Syndecan-1 depleted cells. This increase was linked to an upregulation of the transcription factor Egr1, which regulates heparanase at the promoter level. Inhibitor experiments demonstrated an impact of focal adhesion kinase, Wnt and ROCK-dependent signaling on this process. siRNA-depletion of Syndecan-1, and upregulation of heparanase increased the colon cancer stem cell phenotype based on sphere formation assays and phenotypic marker analysis (Side-population, NANOG, KLF4, NOTCH, Wnt, and TCF4 expression). Syndecan-1 depletion increased invasiveness of Caco2 cells in vitro in a heparanase-dependent manner. Finally, upregulated expression of heparanase resulted in increased resistance to radiotherapy, whereas high expression of enzymatically inactive heparanase promoted chemoresistance to paclitaxel and cisplatin. Our findings provide a new avenue to target a stemness-associated signaling axis as a therapeutic strategy to reduce metastatic spread and cancer recurrence.

6.
ACS Biomater Sci Eng ; 6(6): 3649-3663, 2020 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-33463182

RESUMO

Recent studies have suggested that microenvironmental stimuli play a significant role in regulating cellular proliferation and migration, as well as in modulating self-renewal and differentiation processes of mammary cells with stem cell (SCs) properties. Recent advances in micro/nanotechnology and biomaterial synthesis/engineering currently enable the fabrication of innovative tissue culture platforms suitable for maintenance and differentiation of SCs in vitro. Here, we report the design and fabrication of an open microfluidic device (OMD) integrating removable poly(ε-caprolactone) (PCL) based electrospun scaffolds, and we demonstrate that the OMD allows investigation of the behavior of human cells during in vitro culture in real time. Electrospun scaffolds with modified surface topography and chemistry can influence attachment, proliferation, and differentiation of mammary SCs and epigenetic mechanisms that maintain luminal cell identity as a function of specific morphological or biochemical cues imparted by tailor-made fiber post-treatments. Meanwhile, the OMD architecture allows control of cell seeding and culture conditions to collect more accurate and informative in vitro assays. In perspective, integrated systems could be tailor-made to mimic specific physiological conditions of the local microenvironment and then analyze the response from screening specific drugs for more effective diagnostics, long-term prognostics, and disease intervention in personalized medicine.


Assuntos
Engenharia Tecidual , Alicerces Teciduais , Diferenciação Celular , Humanos , Microfluídica , Poliésteres
7.
Stem Cell Reports ; 12(1): 135-151, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30554919

RESUMO

DACH1 abundance is reduced in human malignancies, including breast cancer. Herein DACH1 was detected among multipotent fetal mammary stem cells in the embryo, among mixed lineage precursors, and in adult basal cells and (ERα+) luminal progenitors. Dach1 gene deletion at 6 weeks in transgenic mice reduced ductal branching, reduced the proportion of mammary basal cells (Lin- CD24med CD29high) and reduced abundance of basal cytokeratin 5, whereas DACH1 overexpression induced ductal branching, increased Gata3 and Notch1, and expanded mammosphere formation in LA-7 breast cells. Mammary gland-transforming growth factor ß (TGF-ß) activity, known to reduce ductal branching and to reduce the basal cell population, increased upon Dach1 deletion, associated with increased SMAD phosphorylation. Association of the scaffold protein Smad anchor for receptor activation with Smad2/3, which facilitates TGF-ß activation, was reduced by endogenous DACH1. DACH1 increases basal cells, enhances ductal formation and restrains TGF-ß activity in vivo.


Assuntos
Proteínas do Olho/genética , Glândulas Mamárias Animais/crescimento & desenvolvimento , Células-Tronco Embrionárias Murinas/metabolismo , Células 3T3 , Animais , Células Cultivadas , Proteínas do Olho/metabolismo , Feminino , Fator de Transcrição GATA3/genética , Fator de Transcrição GATA3/metabolismo , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/metabolismo , Queratina-5/genética , Queratina-5/metabolismo , Glândulas Mamárias Animais/citologia , Glândulas Mamárias Animais/metabolismo , Camundongos , Células-Tronco Embrionárias Murinas/citologia , Ratos , Receptor Notch1/genética , Receptor Notch1/metabolismo , Proteínas Smad/genética , Proteínas Smad/metabolismo , Fator de Crescimento Transformador beta/metabolismo
8.
J Cell Biochem ; 118(3): 570-584, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27632571

RESUMO

Recent studies suggest that human tumors are generated from cancer cells with stem cell (SC) properties. Spontaneously occurring cancers in dogs contain a diversity of cells that like for human tumors suggest that certain canine tumors are also generated from cancer stem cells (CSCs). CSCs, like normal SCs, have the capacity for self-renewal as mammospheres in suspension cultures. To understand how cells with SC properties contribute to canine mammary gland tumor development and progression, comparative analysis between normal SCs and CSCs, obtained from the same individual, is essential. We have utilized the property of sphere formation to develop culture conditions for propagating stem/progenitor cells from canine normal and tumor tissue. We show that cells from dissociated mammospheres retain sphere reformation capacity for several serial passages and have the capacity to generate organoid structures ex situ. Utilizing various culture conditions for passaging SCs and CSCs, fibroblast growth factor 2 (FGF2) and epidermal growth factor (EGF) were found to positively or negatively regulate mammosphere regeneration, organoid formation, and multi-lineage differentiation potential. The response of FGF2 and EGF on SCs and CSCs was different, with increased FGF2 and EGF self-renewal promoted in SCs and repressed in CSCs. Our protocol for propagating SCs from normal and tumor canine breast tissue will provide new opportunities in comparative mammary gland stem cell analysis between species and anticancer treatment and therapies for dogs. J. Cell. Biochem. 118: 570-584, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Proliferação de Células/efeitos dos fármacos , Fator de Crescimento Epidérmico/farmacologia , Fator 2 de Crescimento de Fibroblastos/farmacologia , Neoplasias Mamárias Animais/metabolismo , Células-Tronco Neoplásicas/metabolismo , Organoides/metabolismo , Animais , Cães , Feminino , Neoplasias Mamárias Animais/patologia , Células-Tronco Neoplásicas/patologia , Organoides/patologia , Células Tumorais Cultivadas
9.
Methods Mol Biol ; 1235: 243-62, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25388398

RESUMO

Mammospheres (MMs) are a model for culturing and maintaining mammary gland stem cells (SCs) or cancer stem cells (CSCs) ex situ. As MMs recapitulate the micro-niche of the mammary gland or a tumor, MMs are a model for studying the properties of SCs or CSCs, and for mapping, isolating, and characterizing the SC/CSC generated lineages. Cancer stem cells share with normal SCs the properties of self-renewal and the capacity to generate all cell types and organ structures of the mammary gland. Analysis of human tumor samples suggests that CSCs are heterogeneous in terms of proliferation and differentiation potential. Mammospheres from CSCs likewise display heterogeneity. This heterogeneity makes analysis of CSC generated MMs challenging. To identify the unique and diverse properties of MM derived CSCs, comparative analysis with MMs obtained from normal SCs is required. Here we present protocols for identifying and enriching cells with SC features from a cancer cell line using the LA7CSCs as a model. A comprehensive and comparative approach for identifying, isolating, and characterizing MMs from SCs and CSCs from human breast is also introduced. In addition, we describe detailed procedures for identifying, isolating, and characterizing mammary gland specific cell types, generated during MM formation.


Assuntos
Neoplasias da Mama/patologia , Glândulas Mamárias Humanas/citologia , Glândulas Mamárias Humanas/patologia , Células-Tronco Neoplásicas/citologia , Células-Tronco Neoplásicas/patologia , Animais , Técnicas de Cultura de Células/métodos , Diferenciação Celular , Linhagem Celular Tumoral , Separação Celular/métodos , Feminino , Humanos , Coloração e Rotulagem/métodos
10.
In Silico Biol ; 10(5-6): 207-21, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-22430355

RESUMO

Recent findings suggest the possibility that tumors originate from cancer cells with stem cell properties. The cancer stem cell (CSC) hypothesis provides an explanation for why existing cancer therapies often fail in eradicating highly malignant tumors and end with tumor recurrence. Although normal stem cells and CSCs both share the capacity for self-renewal and multi-lineage differentiation, suggesting that CSC may be derived from normal SCs, the cellular origin of transformation of CSCs is debatable. Research suggests that the tightly controlled balance of self-renewal and differentiation that characterizes normal stem cell function is dis-regulated in cancer. Additionally, recent evidence has linked an embryonic stem cell (ESC)-like gene signature with poorly differentiated high-grade tumors, suggesting that regulatory pathways controlling pluripotency may in part contribute to the somatic CSC phenotype. Here, we introduce expression profile bioinformatic analyses of mouse breast cells with CSC properties, mouse embryonic stem (mES) and induced pluripotent stem (iPS) cells with an emphasis on how study of pluripotent stem cells may contribute to the identification of genes and pathways that facilitate events associated with oncogenesis. Global gene expression analysis from CSCs and induced pluripotent stem cell lines represent an ideal model to study cancer initiation and progression and provide insight into the origin cancer stem cells. Additionally, insight into the genetic and epigenomic mechanisms regulating the balance between self-renewal and differentiation of somatic stem cells and cancer may help to determine whether different strategies used to generate iPSCs are potentially safe for therapeutic use.


Assuntos
Biomarcadores Tumorais/genética , Transformação Celular Neoplásica/genética , Regulação Neoplásica da Expressão Gênica , Homologia de Genes , Células-Tronco Pluripotentes Induzidas/metabolismo , Proteínas de Neoplasias/genética , Células-Tronco Neoplásicas/metabolismo , Animais , Biomarcadores Tumorais/metabolismo , Diferenciação Celular , Linhagem Celular Transformada , Proliferação de Células , Transformação Celular Neoplásica/metabolismo , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Feminino , Perfilação da Expressão Gênica , Células-Tronco Pluripotentes Induzidas/citologia , Glândulas Mamárias Animais , Camundongos , Proteínas de Neoplasias/metabolismo , Células-Tronco Neoplásicas/patologia
11.
Cytotechnology ; 58(1): 25-32, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19034680

RESUMO

The cancer stem cell hypothesis posits that tumors are derived from a single cancer-initiating cell with stem cell properties. The task of identifying and characterizing cancer-initiating cells with stem cell properties at the single cell level has proven technically difficult because of the scarcity of the cancer stem cells in the tissue of origin and the lack of specific markers for cancer stem cells. Here we show that a single LA7 cell, derived from rat mammary adenocarcinoma has: the ability to serially re-generate mammospheres in long-term non-adherent cultures, the differentiation potential to generate all the cell lineages of the mammary gland and branched duct-like structures that recapitulate morphologically and functionally the ductal-alveolar-like architecture of the mammary tree. The properties of self-renewal, extensive capacity for proliferation, multi-lineage differentiation and the tubular-like structure formation potential suggest that LA7 cells is a cancer stem model system to study the dynamics of tumor formation at the single cell level.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...