Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Magn Reson Med ; 73(3): 1340-57, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24687529

RESUMO

PURPOSE: PatLoc (Parallel Imaging Technique using Localized Gradients) accelerates imaging and introduces a resolution variation across the field-of-view. Higher-dimensional encoding employs more spatial encoding magnetic fields (SEMs) than the corresponding image dimensionality requires, e.g. by applying two quadratic and two linear spatial encoding magnetic fields to reconstruct a 2D image. Images acquired with higher-dimensional single-shot trajectories can exhibit strong artifacts and geometric distortions. In this work, the source of these artifacts is analyzed and a reliable correction strategy is derived. METHODS: A dynamic field camera was built for encoding field calibration. Concomitant fields of linear and nonlinear spatial encoding magnetic fields were analyzed. A combined basis consisting of spherical harmonics and concomitant terms was proposed and used for encoding field calibration and image reconstruction. RESULTS: A good agreement between the analytical solution for the concomitant fields and the magnetic field simulations of the custom-built PatLoc SEM coil was observed. Substantial image quality improvements were obtained using a dynamic field camera for encoding field calibration combined with the proposed combined basis. CONCLUSION: The importance of trajectory calibration for single-shot higher-dimensional encoding is demonstrated using the combined basis including spherical harmonics and concomitant terms, which treats the concomitant fields as an integral part of the encoding.


Assuntos
Algoritmos , Artefatos , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Campos Magnéticos , Doses de Radiação , Radiometria , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Processamento de Sinais Assistido por Computador
2.
Magn Reson Med ; 71(1): 57-66, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23440677

RESUMO

Heterogeneity of the static magnetic field in magnetic resonance imaging may cause image artifacts and degradation in image quality. The field heterogeneity can be reduced by dynamically adjusting shim fields or dynamic shim updating, in which magnetic field homogeneity is optimized for each tomographic slice to improve image quality. A limitation of this approach is that a new magnetic field can be applied only once for each slice, otherwise image quality would improve somewhere to its detriment elsewhere in the slice. The motivation of this work is to overcome this limitation and develop a technique using nonlinear magnetic fields to dynamically shim the static magnetic field within a single Fourier-encoded volume or slice, called sub-Fourier dynamic shim updating. However, the nonlinear magnetic fields are not used as shim fields; instead, they impart a strong spatial dependence to the acquired MR signal by nonlinear phase preparation, which may be exploited to locally improve magnetic field homogeneity during acquisition. A theoretical description of the method is detailed, simulations and a proof-of-principle experiment are performed using a magnet coil with a known field geometry. The method is shown to remove artifacts associated with magnetic field homogeneity in balanced steady-state free-precession pulse sequences. We anticipate that this method will be useful to improve the quality of magnetic resonance images by removing deleterious artifacts associated with a heterogeneous static magnetic field.


Assuntos
Algoritmos , Artefatos , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética/métodos , Estudos de Viabilidade , Análise de Fourier , Imageamento por Ressonância Magnética/instrumentação , Dinâmica não Linear , Imagens de Fantasmas , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
3.
Magn Reson Med ; 69(5): 1317-25, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-22711656

RESUMO

In this work, the concept of excitation and geometrically matched local in-plane encoding of curved slices (ExLoc) is introduced. ExLoc is based on a set of locally near-orthogonal spatial encoding magnetic fields, thus maintaining a local rectangular shape of the individual voxels and avoiding potential problems arising due to highly irregular voxel shapes. Unlike existing methods for exciting curved slices based on multidimensional radiofrequency-pulses, excitation and geometrically matched local encoding of curved slices does not require long duration or computationally expensive radiofrequency-pulses. As each encoding field consists of a superposition of potentially arbitrary (spatially linear or nonlinear) magnetic field components, the resulting field shape can be adapted with high flexibility to the specific region of interest. For extended nonplanar structures, this results in improved relevant volume coverage for fewer excited slices and thus increased efficiency. In addition to the mathematical description for the generation of dedicated encoding fields and data reconstruction, a verification of the ExLoc concept in phantom experiments and examples for in vivo curved single and multislice imaging are presented.


Assuntos
Algoritmos , Encéfalo/anatomia & histologia , Interpretação de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética/métodos , Reconhecimento Automatizado de Padrão/métodos , Humanos , Aumento da Imagem/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
4.
Magn Reson Med ; 70(3): 684-96, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23042707

RESUMO

It has recently been demonstrated that nonlinear encoding fields result in a spatially varying resolution. This work develops an automated procedure to design single-shot trajectories that create a local resolution improvement in a region of interest. The technique is based on the design of optimized local k-space trajectories and can be applied to arbitrary hardware configurations that employ any number of linear and nonlinear encoding fields. The trajectories designed in this work are tested with the currently available hardware setup consisting of three standard linear gradients and two quadrupolar encoding fields generated from a custom-built gradient insert. A field camera is used to measure the actual encoding trajectories up to third-order terms, enabling accurate reconstructions of these demanding single-shot trajectories, although the eddy current and concomitant field terms of the gradient insert have not been completely characterized. The local resolution improvement is demonstrated in phantom and in vivo experiments.


Assuntos
Imageamento por Ressonância Magnética/métodos , Algoritmos , Automação , Interpretação de Imagem Assistida por Computador/métodos , Modelos Lineares , Dinâmica não Linear , Imagens de Fantasmas
5.
MAGMA ; 25(6): 419-31, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22484820

RESUMO

OBJECT: This work seeks to examine practical aspects of in vivo imaging when spatial encoding is performed with three or more encoding channels for a 2D image. MATERIALS AND METHODS: The recently developed 4-Dimensional Radial In/Out (4D-RIO) trajectory is compared in simulations to an alternative higher-order encoding scheme referred to as O-space imaging. Direct comparison of local k-space representations leads to the proposal of a modification to the O-space imaging trajectory based on a scheme of prephasing to improve the reconstructed image quality. Data were collected using a 4D-RIO acquisition in vivo in the human brain and several image reconstructions were compared, exploiting the property that the dense encoding matrix, after a 1D or 2D Fourier transform, can be approximated by a sparse matrix by discarding entries below a chosen magnitude. RESULTS: The proposed prephasing scheme for the O-space trajectory shows a marked improvement in quality in the simulated image reconstruction. In experiments, 4D-RIO data acquired in vivo in the human brain can be reconstructed to a reasonable quality using only 5 % of the encoding matrix--massively reducing computer memory requirements for a practical reconstruction. CONCLUSION: Trajectory design and reconstruction techniques such as these may prove especially useful when extending generalized higher-order encoding methods to 3D images.


Assuntos
Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética/métodos , Algoritmos , Artefatos , Encéfalo/patologia , Calibragem , Simulação por Computador , Computadores , Análise de Fourier , Humanos , Processamento de Imagem Assistida por Computador/métodos , Modelos Estatísticos , Software
6.
Magn Reson Med ; 67(6): 1620-32, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22127679

RESUMO

A technique is described to localize MR signals from a target volume using nonlinear pulsed magnetic fields and spatial encoding trajectories designed using local k-space theory. The concept of local k-space is outlined theoretically, and this principle is applied to simulated phantom and cardiac MRI data in the presence of surface and quadrupolar gradient coil phase modulation. Phantom and in vivo human brain images are obtained using a custom, high-performance quadrupolar gradient coil integrated with a whole-body 3-T MRI system to demonstrate target localization using three-dimensional T 2*-weighted spoiled gradient echo, two-dimensional segmented, multiple gradient encoded spin echo, and three-dimensional balanced steady-state free precession acquisitions. This method may provide a practical alternative to selective radiofrequency excitation at ultra-high-field, particularly for steady-state applications where repetition time (TR) must be minimized and when the amount of energy deposited in human tissues is prohibitive. There are several limitations to the approach including the spatial variation in resolution, high frequency aliasing artifacts, and spatial variation in echo times and contrast.


Assuntos
Algoritmos , Encéfalo/anatomia & histologia , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Humanos , Imageamento por Ressonância Magnética/instrumentação , Dinâmica não Linear , Imagens de Fantasmas , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
7.
IEEE Trans Med Imaging ; 30(12): 2134-45, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21843982

RESUMO

We present reconstruction methods for radial magnetic resonance imaging (MRI) data which were spatially encoded using a pair of orthogonal multipolar magnetic fields for in-plane encoding and parallel imaging. It is shown that a direct method exists in addition to iterative reconstruction. Standard direct projection reconstruction algorithms can be combined with a previously developed direct reconstruction for multipolar encoding fields acquired with Cartesian trajectories. The algorithm is simplified by recasting the reconstruction problem into polar coordinates. In this formulation distortion and aliasing become separate effects. Distortion occurs only along the radial direction and aliasing along the azimuthal direction. Moreover, aliased points are equidistantly distributed in this representation, and, consequently, Cartesian SENSE is directly applicable with highly effective unfolding properties for radio-frequency coils arranged with a radial symmetry. The direct and iterative methods are applied to simulated data to analyze basic properties of the algorithms and for the first time also measured in vivo data are presented. The results are compared to linear spatial encoding using a radial trajectory and quadrupolar encoding using a Cartesian trajectory. The direct reconstruction gives good results for fully sampled datasets. Undersampled datasets, however, show star-shaped artifacts, which are significantly reduced with the iterative reconstruction.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Algoritmos , Artefatos , Encéfalo/anatomia & histologia , Humanos
8.
Magn Reson Med ; 65(3): 702-14, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21337403

RESUMO

Spatial encoding in MRI is conventionally achieved by the application of switchable linear encoding fields. The general concept of the recently introduced PatLoc (Parallel Imaging Technique using Localized Gradients) encoding is to use nonlinear fields to achieve spatial encoding. Relaxing the requirement that the encoding fields must be linear may lead to improved gradient performance or reduced peripheral nerve stimulation. In this work, a custom-built insert coil capable of generating two independent quadratic encoding fields was driven with high-performance amplifiers within a clinical MR system. In combination with the three linear encoding fields, the combined hardware is capable of independently manipulating five spatial encoding fields. With the linear z-gradient used for slice-selection, there remain four separate channels to encode a 2D-image. To compare trajectories of such multidimensional encoding, the concept of a local k-space is developed. Through simulations, reconstructions using six gradient-encoding strategies were compared, including Cartesian encoding separately or simultaneously on both PatLoc and linear gradients as well as two versions of a radial-based in/out trajectory. Corresponding experiments confirmed that such multidimensional encoding is practically achievable and demonstrated that the new radial-based trajectory offers the PatLoc property of variable spatial resolution while maintaining finite resolution across the entire field-of-view.


Assuntos
Algoritmos , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Reconhecimento Automatizado de Padrão/métodos , Modelos Lineares , Imageamento por Ressonância Magnética/instrumentação , Dinâmica não Linear , Imagens de Fantasmas , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
9.
J Magn Reson Imaging ; 28(2): 366-74, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18666158

RESUMO

PURPOSE: To propose and to evaluate a novel method for the automatic segmentation of the heart's two ventricles from dynamic ("cine") short-axis "steady state free precession" (SSFP) MR images. This segmentation task is of significant clinical importance. Previously published automated methods have various disadvantages for routine clinical use. MATERIALS AND METHODS: The proposed method is primarily image-driven: it exploits the spatiotemporal information provided by modern 3D+time SSFP cardiac MRI, and makes only few and plausible assumptions about the image acquisition and about the imaged heart. Specifically, the method does not require previously trained statistical shape models or gray-level appearance models, as often used by other methods. RESULTS: The performance of the segmentation method was demonstrated through a qualitative visual validation on 32 clinical exams: no gross failures for the left-ventricle (right-ventricle) on 31 (29) of the exams were found. A validation of resulting quantitative cardiac functional parameters showed good agreement with a manual quantification of 19 clinical exams. CONCLUSION: The proposed method is feasible, fast, and robust against anatomical variability and image contrast variations.


Assuntos
Cardiopatias/patologia , Ventrículos do Coração/patologia , Processamento de Imagem Assistida por Computador/métodos , Imagem Cinética por Ressonância Magnética/métodos , Adulto , Algoritmos , Automação , Humanos , Imageamento Tridimensional
10.
Neuroimage ; 37(1): 71-81, 2007 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-17572111

RESUMO

Conventional k-Nearest-Neighbor (kNN) classification, which has been successfully applied to classify brain tissue in MR data, requires training on manually labeled subjects. This manual labeling is a laborious and time-consuming procedure. In this work, a new fully automated brain tissue classification procedure is presented, in which kNN training is automated. This is achieved by non-rigidly registering the MR data with a tissue probability atlas to automatically select training samples, followed by a post-processing step to keep the most reliable samples. The accuracy of the new method was compared to rigid registration-based training and to conventional kNN-based segmentation using training on manually labeled subjects for segmenting gray matter (GM), white matter (WM) and cerebrospinal fluid (CSF) in 12 data sets. Furthermore, for all classification methods, the performance was assessed when varying the free parameters. Finally, the robustness of the fully automated procedure was evaluated on 59 subjects. The automated training method using non-rigid registration with a tissue probability atlas was significantly more accurate than rigid registration. For both automated training using non-rigid registration and for the manually trained kNN classifier, the difference with the manual labeling by observers was not significantly larger than inter-observer variability for all tissue types. From the robustness study, it was clear that, given an appropriate brain atlas and optimal parameters, our new fully automated, non-rigid registration-based method gives accurate and robust segmentation results. A similarity index was used for comparison with manually trained kNN. The similarity indices were 0.93, 0.92 and 0.92, for CSF, GM and WM, respectively. It can be concluded that our fully automated method using non-rigid registration may replace manual segmentation, and thus that automated brain tissue segmentation without laborious manual training is feasible.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/anatomia & histologia , Análise de Fourier , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Software , Fatores Etários , Idoso , Dominância Cerebral/fisiologia , Feminino , Humanos , Estudos Longitudinais , Modelos Estatísticos , Valores de Referência , Validação de Programas de Computador
11.
Med Image Anal ; 7(4): 513-27, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14561555

RESUMO

A novel, fully automatic, adaptive, robust procedure for brain tissue classification from 3D magnetic resonance head images (MRI) is described in this paper. The procedure is adaptive in that it customizes a training set, by using a 'pruning' strategy, such that the classification is robust against anatomical variability and pathology. Starting from a set of samples generated from prior tissue probability maps (a 'model') in a standard, brain-based coordinate system ('stereotaxic space'), the method first reduces the fraction of incorrectly labeled samples in this set by using a minimum spanning tree graph-theoretic approach. Then, the corrected set of samples is used by a supervised kNN classifier for classifying the entire 3D image. The classification procedure is robust against variability in the image quality through a non-parametric implementation: no assumptions are made about the tissue intensity distributions. The performance of this brain tissue classification procedure is demonstrated through quantitative and qualitative validation experiments on both simulated MRI data (10 subjects) and real MRI data (43 subjects). A significant improvement in output quality was observed on subjects who exhibit morphological deviations from the model due to aging and pathology.


Assuntos
Encéfalo/anatomia & histologia , Imageamento Tridimensional , Imageamento por Ressonância Magnética/métodos , Adulto , Idoso , Automação , Encéfalo/patologia , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Pessoa de Meia-Idade , Modelos Anatômicos , Imagens de Fantasmas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA