Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurosci ; 42(28): 5564-5579, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35998293

RESUMO

Neural adaptation enables the brain to efficiently process sensory signals despite large changes in background noise. Previous studies have established that recent background spectro- or spatio-temporal statistics scale neural responses to sensory stimuli via a canonical normalization computation, which is conserved among species and sensory domains. In the auditory pathway, one major form of normalization, termed contrast gain control, presents as decreasing instantaneous firing-rate gain, the slope of the neural input-output relationship, with increasing variability of background sound levels (contrast) across time and frequency. Despite this gain rescaling, mean firing-rates in auditory cortex become invariant to sound level contrast, termed contrast invariance. The underlying neuromodulatory mechanisms of these two phenomena remain unknown. To study these mechanisms in male and female mice, we used a 2-photon calcium imaging preparation in layer 2/3 neurons of primary auditory cortex (A1), along with pharmacological and genetic KO approaches. We found that neuromodulatory cortical synaptic zinc signaling is necessary for contrast gain control but not contrast invariance in mouse A1.SIGNIFICANCE STATEMENT When sound levels in the acoustic environment become more variable across time and frequency, the brain decreases response gain to maintain dynamic range and thus stimulus discriminability. This gain adaptation accounts for changes in perceptual judgments in humans and mice; however, the underlying neuromodulatory mechanisms remain poorly understood. Here, we report context-dependent neuromodulatory effects of synaptic zinc that are necessary for contrast gain control in A1. Understanding context-specific neuromodulatory mechanisms, such as contrast gain control, provides insight into A1 cortical mechanisms of adaptation and also into fundamental aspects of perceptual changes that rely on gain modulation, such as attention.


Assuntos
Córtex Auditivo , Estimulação Acústica , Animais , Córtex Auditivo/fisiologia , Vias Auditivas , Percepção Auditiva/fisiologia , Feminino , Humanos , Masculino , Camundongos , Ruído , Zinco
2.
Biomaterials ; 161: 117-128, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29421549

RESUMO

Intracortical microelectrode arrays, especially the Utah array, remain the most common choice for obtaining high dimensional recordings of spiking neural activity for brain computer interface and basic neuroscience research. Despite the widespread use and established design, mechanical, material and biological challenges persist that contribute to a steady decline in recording performance (as evidenced by both diminished signal amplitude and recorded cell population over time) or outright array failure. Device implantation injury causes acute cell death and activation of inflammatory microglia and astrocytes that leads to a chronic neurodegeneration and inflammatory glial aggregation around the electrode shanks and often times fibrous tissue growth above the pia along the bed of the array within the meninges. This multifaceted deleterious cascade can result in substantial variability in performance even under the same experimental conditions. We track both impedance signatures and electrophysiological performance of 4 × 4 floating microelectrode Utah arrays implanted in the primary monocular visual cortex (V1m) of Long-Evans rats over a 12-week period. We employ a repeatable visual stimulation method to compare signal-to-noise ratio as well as single- and multi-unit yield from weekly recordings. To explain signal variability with biological response, we compare arrays categorized as either Type 1, partial fibrous encapsulation, or Type 2, complete fibrous encapsulation and demonstrate performance and impedance signatures unique to encapsulation type. We additionally assess benefits of a biomolecule coating intended to minimize distance to recordable units and observe a temporary improvement on multi-unit recording yield and single-unit amplitude.


Assuntos
Biomimética/métodos , Impedância Elétrica , Animais , Fenômenos Eletrofisiológicos , Microeletrodos , Ratos
3.
J Comp Neurol ; 525(6): 1347-1362, 2017 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26801010

RESUMO

The claustrum is a telencephalic gray matter structure with various proposed functions, including sensory integration and attentional allocation. Underlying these concepts is the reciprocal connectivity of the claustrum with most, if not all, areas of the cortex. What remains to be elucidated to inform functional hypotheses further is whether a pattern exists in the strength of connectivity between a given cortical area and the claustrum. To this end, we performed a series of retrograde neuronal tract tracer injections into rat cortical areas along the cortical processing hierarchy, from primary sensory and motor to frontal cortices. We observed that the number of claustrocortical projections increased as a function of processing hierarchy; claustrum neurons projecting to primary sensory cortices were scant and restricted in distribution across the claustrum, whereas neurons projecting to the cingulate cortex were densely packed and more evenly distributed throughout the claustrum. This connectivity pattern suggests that the claustrum may preferentially subserve executive functions orchestrated by the cingulate cortex. J. Comp. Neurol. 525:1347-1362, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Gânglios da Base/anatomia & histologia , Vias Neurais/anatomia & histologia , Neurônios/citologia , Animais , Imuno-Histoquímica , Masculino , Ratos , Ratos Sprague-Dawley
4.
Biosens Bioelectron ; 89(Pt 1): 400-410, 2017 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-27268013

RESUMO

Dopamine (DA) is a monoamine neurotransmitter responsible for regulating a variety of vital life functions. In vivo detection of DA poses a challenge due to the low concentration and high speed of physiological signaling. Fast scan cyclic voltammetry at carbon fiber microelectrodes (CFEs) is an effective method to monitor real-time in vivo DA signaling, however the sensitivity is somewhat limited. Electrodeposition of poly(3,4-ethylene dioxythiophene) (PEDOT)/graphene oxide (GO) onto the CFE surface is shown to increase the sensitivity and lower the limit of detection for DA compared to bare CFEs. Thicker PEDOT/GO coatings demonstrate higher sensitivities for DA, but display the negative drawback of slow adsorption and electron transfer kinetics. The moderate thickness resulting from 25 s electrodeposition of PEDOT/GO produces the optimal electrode, exhibiting an 880% increase in sensitivity, a 50% decrease in limit of detection and minimally altered electrode kinetics. PEDOT/GO coated electrodes rapidly and robustly detect DA, both in solution and in the rat dorsal striatum. This increase in DA sensitivity is likely due to increasing the electrode surface area with a PEDOT/GO coating and improved adsorption of DA's oxidation product (DA-o-quinone). Increasing DA sensitivity without compromising electrode kinetics is expected to significantly improve our understanding of the DA function in vivo.


Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes/química , Corpo Estriado/química , Dopamina/análise , Técnicas Eletroquímicas/métodos , Grafite/química , Polímeros/química , Animais , Técnicas Biossensoriais/métodos , Galvanoplastia , Limite de Detecção , Masculino , Microeletrodos , Ratos , Ratos Sprague-Dawley
5.
Front Neuroanat ; 9: 6, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25698938

RESUMO

Optogenetic constructs have revolutionized modern neuroscience, but the ability to accurately and efficiently assess their expression in the brain and associate it with prior functional measures remains a challenge. High-resolution imaging of thick, fixed brain sections would make such post-hoc assessment and association possible; however, thick sections often display autofluorescence that limits their compatibility with fluorescence microscopy. We describe and evaluate a method we call "Brain BLAQ" (Block Lipids and Aldehyde Quench) to rapidly reduce autofluorescence in thick brain sections, enabling efficient axon-level imaging of neurons and their processes in conventional tissue preparations using standard epifluorescence microscopy. Following viral-mediated transduction of optogenetic constructs and fluorescent proteins in mouse cortical pyramidal and dopaminergic neurons, we used BLAQ to assess innervation patterns in the striatum, a region in which autofluorescence often obscures the imaging of fine neural processes. After BLAQ treatment of 250-350 µm-thick brain sections, axons and puncta of labeled afferents were visible throughout the striatum using a standard epifluorescence stereomicroscope. BLAQ histochemistry confirmed that motor cortex (M1) projections preferentially innervated the matrix component of lateral striatum, whereas medial prefrontal cortex projections terminated largely in dorsal striosomes and distinct nucleus accumbens subregions. Ventral tegmental area dopaminergic projections terminated in a similarly heterogeneous pattern within nucleus accumbens and ventral striatum. Using a minimal number of easily manipulated and visualized sections, and microscopes available in most neuroscience laboratories, BLAQ enables simple, high-resolution assessment of virally transduced optogenetic construct expression, and post-hoc association of this expression with molecular markers, physiology and behavior.

6.
Eur J Neurosci ; 39(4): 548-56, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24236977

RESUMO

Dopamine (DA) plays an important role in integrative functions contributing to adaptive behaviors. In support of this essential function, DA modulates synaptic plasticity in different brain areas, including the striatum. Many drugs used for cognitive enhancement are psychostimulants, such as methylphenidate (MPH), which enhance DA levels. MPH treatment is of interest during adolescence, a period of enhanced neurodevelopment during which the DA system is in a state of flux. Recent epidemiological studies report the co-abuse of MPH and ethanol in adolescents and young adults. Although repeated MPH treatment produces enduring changes that affect subsequent behavioral responses to other psychostimulants, few studies have investigated the interactions between MPH and ethanol. Here we addressed whether chronic therapeutic exposure to MPH during adolescence predisposed mice to an altered response to ethanol and whether this was accompanied by altered DA release and striatal plasticity. C57BL/6J mice were administered MPH (3-6 mg/kg/day) via the drinking water between post-natal days 30 and 60. Voltammetry experiments showed that sufficient brain MPH concentrations were achieved during adolescence in mice to increase the DA clearance in adulthood. The treatment also increased long-term depression and reduced the effects of ethanol on striatal synaptic responses. Although the injection of 0.4 or 2 g/kg ethanol dose-dependently decreased locomotion in control mice, only the higher dose decreased locomotion in MPH-treated mice. These results suggested that the administration of MPH during development promoted long-term effects on synaptic plasticity in forebrain regions targeted by DA. These changes in plasticity might, in turn, underlie alterations in behaviors controlled by these brain regions into adulthood.


Assuntos
Estimulantes do Sistema Nervoso Central/farmacologia , Corpo Estriado/efeitos dos fármacos , Etanol/farmacologia , Depressão Sináptica de Longo Prazo , Metilfenidato/farmacologia , Sinapses/efeitos dos fármacos , Animais , Corpo Estriado/crescimento & desenvolvimento , Corpo Estriado/fisiologia , Locomoção , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Sinapses/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...