Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Ecol Resour ; 24(2): e13904, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37994269

RESUMO

Several computational frameworks and workflows that recover genomes from prokaryotes, eukaryotes and viruses from metagenomes exist. Yet, it is difficult for scientists with little bioinformatics experience to evaluate quality, annotate genes, dereplicate, assign taxonomy and calculate relative abundance and coverage of genomes belonging to different domains. MuDoGeR is a user-friendly tool tailored for those familiar with Unix command-line environment that makes it easy to recover genomes of prokaryotes, eukaryotes and viruses from metagenomes, either alone or in combination. We tested MuDoGeR using 24 individual-isolated genomes and 574 metagenomes, demonstrating the applicability for a few samples and high throughput. While MuDoGeR can recover eukaryotic viral sequences, its characterization is predominantly skewed towards bacterial and archaeal viruses, reflecting the field's current state. However, acting as a dynamic wrapper, the MuDoGeR is designed to constantly incorporate updates and integrate new tools, ensuring its ongoing relevance in the rapidly evolving field. MuDoGeR is open-source software available at https://github.com/mdsufz/MuDoGeR. Additionally, MuDoGeR is also available as a Singularity container.


Assuntos
Metagenoma , Vírus , Metagenômica , Software , Bactérias/genética , Filogenia , Vírus/genética
2.
Environ Microbiome ; 17(1): 57, 2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36401317

RESUMO

BACKGROUND: Metagenomics is an expanding field within microbial ecology, microbiology, and related disciplines. The number of metagenomes deposited in major public repositories such as Sequence Read Archive (SRA) and Metagenomic Rapid Annotations using Subsystems Technology (MG-RAST) is rising exponentially. However, data mining and interpretation can be challenging due to mis-annotated and misleading metadata entries. In this study, we describe the Marine Metagenome Metadata Database (MarineMetagenomeDB) to help researchers identify marine metagenomes of interest for re-analysis and meta-analysis. To this end, we have manually curated the associated metadata of several thousands of microbial metagenomes currently deposited at SRA and MG-RAST. RESULTS: In total, 125 terms were curated according to 17 different classes (e.g., biome, material, oceanic zone, geographic feature and oceanographic phenomena). Other standardized features include sample attributes (e.g., salinity, depth), sample location (e.g., latitude, longitude), and sequencing features (e.g., sequencing platform, sequence count). MarineMetagenomeDB version 1.0 contains 11,449 marine metagenomes from SRA and MG-RAST distributed across all oceans and several seas. Most samples were sequenced using Illumina sequencing technology (84.33%). More than 55% of the samples were collected from the Pacific and the Atlantic Oceans. About 40% of the samples had their biomes assigned as 'ocean'. The 'Quick Search' and 'Advanced Search' tabs allow users to use different filters to select samples of interest dynamically in the web app. The interactive map allows the visualization of samples based on their location on the world map. The web app is also equipped with a novel download tool (on both Windows and Linux operating systems), that allows easy download of raw sequence data of selected samples from their respective repositories. As a use case, we demonstrated how to use the MarineMetagenomeDB web app to select estuarine metagenomes for potential large-scale microbial biogeography studies. CONCLUSION: The MarineMetagenomeDB is a powerful resource for non-bioinformaticians to find marine metagenome samples with curated metadata and stimulate meta-studies involving marine microbiomes. Our user-friendly web app is publicly available at https://webapp.ufz.de/marmdb/ .

3.
Life Sci Alliance ; 4(12)2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34580179

RESUMO

The high complexity found in microbial communities makes the identification of microbial interactions challenging. To address this challenge, we present OrtSuite, a flexible workflow to predict putative microbial interactions based on genomic content of microbial communities and targeted to specific ecosystem processes. The pipeline is composed of three user-friendly bash commands. OrtSuite combines ortholog clustering with genome annotation strategies limited to user-defined sets of functions allowing for hypothesis-driven data analysis such as assessing microbial interactions in specific ecosystems. OrtSuite matched, on average, 96% of experimentally verified KEGG orthologs involved in benzoate degradation in a known group of benzoate degraders. We evaluated the identification of putative synergistic species interactions using the sequenced genomes of an independent study that had previously proposed potential species interactions in benzoate degradation. OrtSuite is an easy-to-use workflow that allows for rapid functional annotation based on a user-curated database and can easily be extended to ecosystem processes where connections between genes and reactions are known. OrtSuite is an open-source software available at https://github.com/mdsufz/OrtSuite.


Assuntos
Bactérias/genética , Bactérias/metabolismo , Ecossistema , Genoma Bacteriano , Interações Microbianas/genética , Software , Fluxo de Trabalho , Acetilcoenzima A/metabolismo , Sequência de Bases , Benzoatos/metabolismo , Bases de Dados Genéticas , Genômica/métodos , Anotação de Sequência Molecular/métodos , Transdução de Sinais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...