Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Front Pharmacol ; 14: 1197257, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37408765

RESUMO

Background: KATP channels have diverse roles, including regulation of insulin secretion and blood flow, and protection against biological stress responses and are excellent therapeutic targets. Different subclasses of KATP channels exist in various tissue types due to the unique assemblies of specific pore-forming (Kir6.x) and accessory (SURx) subunits. The majority of pharmacological openers and blockers act by binding to SURx and are poorly selective against the various KATP channel subclasses. Methods and Results: We used 3D models of the Kir6.2/SUR homotetramers based on existing cryo-EM structures of channels in both the open and closed states to identify a potential agonist binding pocket in a functionally critical area of the channel. Computational docking screens of this pocket with the Chembridge Core chemical library of 492,000 drug-like compounds yielded 15 top-ranked "hits", which were tested for activity against KATP channels using patch clamping and thallium (Tl+) flux assays with a Kir6.2/SUR2A HEK-293 stable cell line. Several of the compounds increased Tl+ fluxes. One of them (CL-705G) opened Kir6.2/SUR2A channels with a similar potency as pinacidil (EC50 of 9 µM and 11 µM, respectively). Remarkably, compound CL-705G had no or minimal effects on other Kir channels, including Kir6.1/SUR2B, Kir2.1, or Kir3.1/Kir3.4 channels, or Na+ currents of TE671 medulloblastoma cells. CL-705G activated Kir6.2Δ36 in the presence of SUR2A, but not when expressed by itself. CL-705G activated Kir6.2/SUR2A channels even after PIP2 depletion. The compound has cardioprotective effects in a cellular model of pharmacological preconditioning. It also partially rescued activity of the gating-defective Kir6.2-R301C mutant that is associated with congenital hyperinsulinism. Conclusion: CL-705G is a new Kir6.2 opener with little cross-reactivity with other channels tested, including the structurally similar Kir6.1. This, to our knowledge, is the first Kir-specific channel opener.

2.
Am J Physiol Cell Physiol ; 324(5): C1017-C1027, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36878847

RESUMO

Sirtuins are NAD+-dependent deacetylases with beneficial roles in conditions relevant to human health, including metabolic disease, type II diabetes, obesity, cancer, aging, neurodegenerative diseases, and cardiac ischemia. Since ATP-sensitive K+ (KATP) channels have cardioprotective roles, we investigated whether they are regulated by sirtuins. Nicotinamide mononucleotide (NMN) was used to increase cytosolic NAD+ levels and to activate sirtuins in cell lines, isolated rat and mouse cardiomyocytes or insulin-secreting INS-1 cells. KATP channels were studied with patch clamping, biochemistry techniques, and antibody uptake experiments. NMN led to an increase in intracellular NAD+ levels and an increase in the KATP channel current, without significant changes in the unitary current amplitude or open probability. An increased surface expression was confirmed using surface biotinylation approaches. The rate of KATP channel internalization was diminished by NMN, which may be a partial explanation for the increased surface expression. We show that NMN acts via sirtuins since the increased KATP channel surface expression was prevented by blockers of SIRT1 and SIRT2 (Ex527 and AGK2) and mimicked by SIRT1 activation (SRT1720). The pathophysiological relevance of this finding was studied using a cardioprotection assay with isolated ventricular myocytes, in which NMN protected against simulated ischemia or hypoxia in a KATP channel-dependent manner. Overall, our data draw a link between intracellular NAD+, sirtuin activation, KATP channel surface expression, and cardiac protection against ischemic damage.


Assuntos
Diabetes Mellitus Tipo 2 , Sirtuínas , Ratos , Camundongos , Humanos , Animais , Sirtuína 1/genética , Sirtuína 1/metabolismo , Sirtuínas/genética , Sirtuínas/metabolismo , NAD/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Miócitos Cardíacos/metabolismo , Trifosfato de Adenosina/metabolismo , Canais KATP/genética , Canais KATP/metabolismo
3.
Channels (Austin) ; 16(1): 137-147, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35754325

RESUMO

ATP-sensitive K+ (KATP) channel couples membrane excitability to intracellular energy metabolism. Maintaining KATP channel surface expression is key to normal insulin secretion, blood pressure and cardioprotection. However, the molecular mechanisms regulating KATP channel internalization and endocytic recycling, which directly affect the surface expression of KATP channels, are poorly understood. Here we used the cardiac KATP channel subtype, Kir6.2/SUR2A, and characterized Rab35 GTPase as a key regulator of KATP channel endocytic recycling. Electrophysiological recordings and surface biotinylation assays showed decreased KATP channel surface density with co-expression of a dominant negative Rab35 mutant (Rab35-DN), but not other recycling-related Rab GTPases, including Rab4, Rab11a and Rab11b. Immunofluorescence images revealed strong colocalization of Rab35-DN with recycling Kir6.2. Rab35-DN minimized the recycling rate of KATP channels. Rab35 also regulated KATP channel current amplitude in isolated adult cardiomyocytes by affecting its surface expression but not channel properties, which validated its physiologic relevance and the potential of pharmacologic target for treating the diseases with KATP channel trafficking defects.


Assuntos
GTP Fosfo-Hidrolases , Canais KATP , Trifosfato de Adenosina/metabolismo , Transporte Biológico , GTP Fosfo-Hidrolases/metabolismo , Canais KATP/genética , Canais KATP/metabolismo , Miócitos Cardíacos/metabolismo
4.
Am J Physiol Cell Physiol ; 322(6): C1230-C1247, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35508187

RESUMO

Sarcolemmal/plasmalemmal ATP-sensitive K+ (KATP) channels have key roles in many cell types and tissues. Hundreds of studies have described how the KATP channel activity and ATP sensitivity can be regulated by changes in the cellular metabolic state, by receptor signaling pathways and by pharmacological interventions. These alterations in channel activity directly translate to alterations in cell or tissue function, that can range from modulating secretory responses, such as insulin release from pancreatic ß-cells or neurotransmitters from neurons, to modulating contractile behavior of smooth muscle or cardiac cells to elicit alterations in blood flow or cardiac contractility. It is increasingly becoming apparent, however, that KATP channels are regulated beyond changes in their activity. Recent studies have highlighted that KATP channel surface expression is a tightly regulated process with similar implications in health and disease. The surface expression of KATP channels is finely balanced by several trafficking steps including synthesis, assembly, anterograde trafficking, membrane anchoring, endocytosis, endocytic recycling, and degradation. This review aims to summarize the physiological and pathophysiological implications of KATP channel trafficking and mechanisms that regulate KATP channel trafficking. A better understanding of this topic has potential to identify new approaches to develop therapeutically useful drugs to treat KATP channel-related diseases.


Assuntos
Células Secretoras de Insulina , Trifosfato de Adenosina/metabolismo , Transporte Biológico , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Canais KATP/genética , Canais KATP/metabolismo , Transporte Proteico
5.
Nat Immunol ; 23(2): 287-302, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35105987

RESUMO

The volume-regulated anion channel (VRAC) is formed by LRRC8 proteins and is responsible for the regulatory volume decrease (RVD) after hypotonic cell swelling. Besides chloride, VRAC transports other molecules, for example, immunomodulatory cyclic dinucleotides (CDNs) including 2'3'cGAMP. Here, we identify LRRC8C as a critical component of VRAC in T cells, where its deletion abolishes VRAC currents and RVD. T cells of Lrrc8c-/- mice have increased cell cycle progression, proliferation, survival, Ca2+ influx and cytokine production-a phenotype associated with downmodulation of p53 signaling. Mechanistically, LRRC8C mediates the transport of 2'3'cGAMP in T cells, resulting in STING and p53 activation. Inhibition of STING recapitulates the phenotype of LRRC8C-deficient T cells, whereas overexpression of p53 inhibits their enhanced T cell function. Lrrc8c-/- mice have exacerbated T cell-dependent immune responses, including immunity to influenza A virus infection and experimental autoimmune encephalomyelitis. Our results identify cGAMP uptake through LRRC8C and STING-p53 signaling as a new inhibitory signaling pathway in T cells and adaptive immunity.


Assuntos
Ânions/metabolismo , Fosfatos de Dinucleosídeos/metabolismo , Canais Iônicos/metabolismo , Proteínas de Membrana/metabolismo , Linfócitos T/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Cálcio/metabolismo , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Nucleotídeos Cíclicos/metabolismo , Transdução de Sinais/fisiologia
6.
Sci Immunol ; 5(50)2020 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-32826342

RESUMO

Piezo1 is a mechanosensitive ion channel that has gained recognition for its role in regulating diverse physiological processes. However, the influence of Piezo1 in inflammatory disease, including infection and tumor immunity, is not well studied. We postulated that Piezo1 links physical forces to immune regulation in myeloid cells. We found signal transduction via Piezo1 in myeloid cells and established this channel as the primary sensor of mechanical stress in these cells. Global inhibition of Piezo1 with a peptide inhibitor was protective against both cancer and septic shock and resulted in a diminution in suppressive myeloid cells. Moreover, deletion of Piezo1 in myeloid cells protected against cancer and increased survival in polymicrobial sepsis. Mechanistically, we show that mechanical stimulation promotes Piezo1-dependent myeloid cell expansion by suppressing the retinoblastoma gene Rb1 We further show that Piezo1-mediated silencing of Rb1 is regulated via up-regulation of histone deacetylase 2. Collectively, our work uncovers Piezo1 as a targetable immune checkpoint that drives immunosuppressive myelopoiesis in cancer and infectious disease.


Assuntos
Carcinoma Ductal Pancreático/imunologia , Doenças Transmissíveis/imunologia , Canais Iônicos/imunologia , Neoplasias Pancreáticas/imunologia , Sepse/imunologia , Animais , Carcinoma Ductal Pancreático/mortalidade , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Progressão da Doença , Feminino , Humanos , Imunidade Inata , Canais Iônicos/genética , Estimativa de Kaplan-Meier , Masculino , Camundongos Transgênicos , Células Mieloides/imunologia , Neoplasias Pancreáticas/mortalidade , Neoplasias Pancreáticas/patologia , Transdução de Sinais
7.
J Mol Cell Cardiol ; 144: 1-11, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32339567

RESUMO

BACKGROUND: Genetic variants in SCN5A can result in channelopathies such as the long QT syndrome type 3 (LQT3), but the therapeutic response to Na+ channel blockers can vary. We previously reported a case of an infant with malignant LQT3 and a missense Q1475P SCN5A variant, who was effectively treated with phenytoin, but only partially with mexiletine. Here, we functionally characterized this variant and investigated possible mechanisms for the differential drug actions. METHODS: Wild-type or mutant Nav1.5 cDNAs were examined in transfected HEK293 cells with patch clamping and biochemical assays. We used computational modeling to provide insights into altered channel kinetics and to predict effects on the action potential. RESULTS: The Q1475P variant in Nav1.5 reduced the current density and channel surface expression, characteristic of a trafficking defect. The variant also led to positive shifts in the voltage dependence of steady-state activation and inactivation, faster inactivation and recovery from inactivation, and increased the "late" Na+ current. Simulations of Nav1.5 gating with a 9-state Markov model suggested that transitions from inactivated to closed states were accelerated in Q1475P channels, leading to accumulation of channels in non-inactivated closed states. Simulations with a human ventricular myocyte model predicted action potential prolongation with Q1475P, compared with wild type, channels. Patch clamp data showed that mexiletine and phenytoin similarly rescued some of the gating defects. Chronic incubation with mexiletine, but not phenytoin, rescued the Nav1.5-Q1475P trafficking defect, thus increasing mutant channel expression. CONCLUSIONS: The gain-of-function effects of Nav1.5-Q1475P predominate to cause a malignant long QT phenotype. Phenytoin partially corrects the gating defect without restoring surface expression of the mutant channel, whereas mexiletine restores surface expression of the mutant channel, which may explain the lack of efficacy of mexiletine when compared to phenytoin. Our data makes a case for experimental studies before embarking on a one-for-all therapy of arrhythmias.


Assuntos
Doença do Sistema de Condução Cardíaco/etiologia , Gerenciamento Clínico , Suscetibilidade a Doenças , Síndrome do QT Longo/etiologia , Fenitoína/farmacologia , Bloqueadores do Canal de Sódio Disparado por Voltagem/uso terapêutico , Potenciais de Ação/efeitos dos fármacos , Substituição de Aminoácidos , Antiarrítmicos/farmacologia , Doença do Sistema de Condução Cardíaco/diagnóstico , Doença do Sistema de Condução Cardíaco/tratamento farmacológico , Doença do Sistema de Condução Cardíaco/metabolismo , Células Cultivadas , Mutação com Ganho de Função , Células HEK293 , Humanos , Ativação do Canal Iônico/efeitos dos fármacos , Síndrome do QT Longo/diagnóstico , Síndrome do QT Longo/tratamento farmacológico , Síndrome do QT Longo/metabolismo , Modelos Biológicos , Mutação de Sentido Incorreto , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Técnicas de Patch-Clamp , Fenitoína/uso terapêutico
8.
Proc Natl Acad Sci U S A ; 117(19): 10593-10602, 2020 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-32332165

RESUMO

A physiological role for long-chain acyl-CoA esters to activate ATP-sensitive K+ (KATP) channels is well established. Circulating palmitate is transported into cells and converted to palmitoyl-CoA, which is a substrate for palmitoylation. We found that palmitoyl-CoA, but not palmitic acid, activated the channel when applied acutely. We have altered the palmitoylation state by preincubating cells with micromolar concentrations of palmitic acid or by inhibiting protein thioesterases. With acyl-biotin exchange assays we found that Kir6.2, but not sulfonylurea receptor (SUR)1 or SUR2, was palmitoylated. These interventions increased the KATP channel mean patch current, increased the open time, and decreased the apparent sensitivity to ATP without affecting surface expression. Similar data were obtained in transfected cells, rat insulin-secreting INS-1 cells, and isolated cardiac myocytes. Kir6.2ΔC36, expressed without SUR, was also positively regulated by palmitoylation. Mutagenesis of Kir6.2 Cys166 prevented these effects. Clinical variants in KCNJ11 that affect Cys166 had a similar gain-of-function phenotype, but was more pronounced. Molecular modeling studies suggested that palmitoyl-C166 and selected large hydrophobic mutations make direct hydrophobic contact with Kir6.2-bound PIP2 Patch-clamp studies confirmed that palmitoylation of Kir6.2 at Cys166 enhanced the PIP2 sensitivity of the channel. Physiological relevance is suggested since palmitoylation blunted the regulation of KATP channels by α1-adrenoreceptor stimulation. The Cys166 residue is conserved in some other Kir family members (Kir6.1 and Kir3, but not Kir2), which are also subject to regulated palmitoylation, suggesting a general mechanism to control the open state of certain Kir channels.


Assuntos
Canais KATP/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Acil Coenzima A/metabolismo , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Cisteína/metabolismo , Células HEK293 , Humanos , Canais KATP/genética , Lipoilação/fisiologia , Mutagênese/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Técnicas de Patch-Clamp/métodos , Canais de Potássio/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/fisiologia , Cultura Primária de Células , Ratos , Receptores de Sulfonilureias/genética
9.
Elife ; 92020 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-31934859

RESUMO

We investigated targeting mechanisms of Na+ and KATP channels to the intercalated disk (ICD) of cardiomyocytes. Patch clamp and surface biotinylation data show reciprocal downregulation of each other's surface density. Mutagenesis of the Kir6.2 ankyrin binding site disrupts this functional coupling. Duplex patch clamping and Angle SICM recordings show that INa and IKATP functionally co-localize at the rat ICD, but not at the lateral membrane. Quantitative STORM imaging show that Na+ and KATP channels are localized close to each other and to AnkG, but not to AnkB, at the ICD. Peptides corresponding to Nav1.5 and Kir6.2 ankyrin binding sites dysregulate targeting of both Na+ and KATP channels to the ICD, but not to lateral membranes. Finally, a clinically relevant gene variant that disrupts KATP channel trafficking also regulates Na+ channel surface expression. The functional coupling between these two channels need to be considered when assessing clinical variants and therapeutics.


Assuntos
Anquirinas/química , Regulação da Expressão Gênica , Miócitos Cardíacos/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Animais , Sítios de Ligação , Biotinilação , Células HEK293 , Humanos , Mutagênese , Miocárdio/metabolismo , Técnicas de Patch-Clamp , Ratos
10.
Forensic Sci Int ; 301: 289-298, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31195250

RESUMO

BACKGROUND: Multiple genome-wide association studies (GWAS) and targeted gene sequencing have identified common variants in SCN10A in cases of PR and QRS duration abnormalities, atrial fibrillation and Brugada syndrome. The New York City Office of Chief Medical Examiner has now also identified five SCN10A variants of uncertain significance in six separate cases within a cohort of 330 sudden unexplained death events. The gene product of SCN10A is the Nav1.8 sodium channel. The purpose of this study was to characterize effects of these variants on Nav1.8 channel function to provide better information for the reclassification of these variants. METHODS AND RESULTS: Patch clamp studies were performed to assess effects of the variants on whole-cell Nav1.8 currents. We also performed RNA-seq analysis and immunofluorescence confocal microcopy to determine Nav1.8 expression in heart. We show that four of the five rare 'variants of unknown significance' (L388M, L867F, P1102S and V1518I) are associated with altered functional phenotypes. The R756W variant behaved similar to wild-type under our experimental conditions. We failed to detect Nav1.8 protein expression in immunofluorescence microscopy in rat heart. Furthermore, RNA-seq analysis failed to detect full-length SCN10A mRNA transcripts in human ventricle or mouse specialized cardiac conduction system, suggesting that the effect of Nav1.8 on cardiac function is likely to be extra-cardiac in origin. CONCLUSIONS: We have demonstrated that four of five SCN10A variants of uncertain significance, identified in unexplained death, have deleterious effects on channel function. These data extend the genetic testing of SUD cases, but significantly more clinical evidence is needed to satisfy the criteria needed to associate these variants with the onset of SUD.


Assuntos
Morte Súbita/etiologia , Variação Genética , Canal de Sódio Disparado por Voltagem NAV1.8/genética , Adulto , Animais , Western Blotting , Pré-Escolar , Feminino , Genética Forense , Humanos , Imuno-Histoquímica , Lactente , Recém-Nascido , Masculino , Microscopia de Fluorescência , Miocárdio/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.8/metabolismo , Técnicas de Patch-Clamp , RNA Mensageiro/metabolismo , Ratos , Adulto Jovem
11.
Forensic Sci Int ; 298: 80-87, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30878466

RESUMO

BACKGROUND: Genetic variation in ion channel genes ('channelopathies') are often associated with inherited arrhythmias and sudden death. Genetic testing ('molecular autopsies') of channelopathy genes can be used to assist in determining the likely causes of sudden unexpected death. However, different in silico approaches can yield conflicting pathogenicity predictions and assessing their impact on ion channel function can assist in this regard. METHODS AND RESULTS: We performed genetic testing of cases of sudden expected death in the New York City metropolitan area and found four rare or novel variants in ABCC9, which codes for the regulatory SUR2 subunit of KATP channels. All were missense variants, causing amino acid changes in the protein. Three of the variants (A355S, M941V, and K1379Q) were in cases of infants less than six-months old and one (H1305Y) was in an adult. The predicted pathogenicities of the variants were conflicting. We have introduced these variants into a human SUR2A cDNA, which we coexpressed with the Kir6.2 pore-forming subunit in HEK-293 cells and subjected to patch clamp and biochemical assays. Each of the four variants led to gain-of-function phenotypes. The A355S and M941V variants increased in the overall patch current. The sensitivity of the KATP channels to inhibitory 'cytosolic' ATP was repressed for the M941V, H1305Y and K1379Q variants. None of the variants had any effect on the unitary KATP channel current or the surface expression of KATP channels, as determined with biotinylation assays, suggesting that all of the variants led to an enhanced open state. CONCLUSIONS: All four variants caused a gain-of-function phenotype. Given the expression of SUR2-containing KATP channels in the heart and specialized cardiac conduction, vascular smooth muscle and respiratory neurons, it is conceivable that electrical silencing of these cells may contribute to the vulnerability element, which is a component of the triple risk model of sudden explained death in infants. The gain-of-function phenotype of these ABCC9 variants should be considered when assessing their potential pathogenicity.


Assuntos
Morte Súbita/etiologia , Mutação de Sentido Incorreto , Receptores de Sulfonilureias/genética , Adulto , Canalopatias/genética , DNA Complementar , Feminino , Mutação com Ganho de Função , Células HEK293 , Humanos , Lactente , Canais KATP/genética , Masculino , Cidade de Nova Iorque , Técnicas de Patch-Clamp , Fenótipo
12.
Sci Signal ; 12(572)2019 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-30862701

RESUMO

Ion channels facilitate the movement of ions across the plasma and organellar membranes. A recent symposium brought together scientists who study ion channels and transporters in immune cells, which highlighted advances in this emerging field and served to chart new avenues for investigating the roles of ion channels in immunity.


Assuntos
Sinalização do Cálcio/imunologia , Membranas Intracelulares/imunologia , Canais Iônicos/imunologia , Organelas/imunologia , Animais , Humanos
13.
Forensic Sci Med Pathol ; 15(3): 437-444, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30547356

RESUMO

Determining the cause of unexplained death in all age groups, including infants, is a priority in forensic medicine. The triple risk model proposed for sudden infant death syndrome involves the intersection of three risks: (1) a critical developmental period in homeostatic control (2), exogenous stressors, and (3) a vulnerable infant. Even though sex and age factor into some forms of inherited arrhythmogenic deaths in young individuals and adults, more appropriate a dual-risk disease model for adults involves exogenous stressors and a vulnerable individual. The vulnerability aspect clearly has a genetic component as underscored by a number of recent large-scale and high-throughput genetic testing studies performed in attempt to define the causes of sudden unexplained death. These studies often focus on 'cardiac' and channelopathy genes. Genetic testing often identify lists of rare or ultra-rare nonsynonymous variants, classified according to the ACMG guidelines as 'pathogenic' or 'likely pathogenic', which may form the basis of diagnostic decisions and/or family counseling. However, computer algorithms used to categorize gene variants are not completely accurate and these variants are often not functionally tested to determine their pathogenicity. Due to conflicting computational predictions, a large number of variants are labeled as 'variants of uncertain significance' or VUS. Functional testing of these VUS can greatly assist to reclassify these VUS as 'likely benign' or 'likely pathogenic'. However, functional testing has its limits and by itself cannot be used to determine cause of death. Going forward, computer algorithms must be improved to take account of variants across multiple genes and efforts must be expanded to obtain clinical, familial and segregation data. Forensic genetic testing needs to be held to the same rigorous standards as defined by the NIH Clinical Genome Resource Consortium, where functional evaluation of a channelopathy variant is only one (but important) aspect of the overall picture.


Assuntos
Canalopatias/genética , Morte Súbita/etiologia , Variação Genética , Morte Súbita do Lactente/genética , Genética Forense , Predisposição Genética para Doença , Testes Genéticos , Humanos , Lactente
14.
Pacing Clin Electrophysiol ; 42(2): 275-282, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30578647

RESUMO

The HCN4 gene encodes a subunit of the hyperpolarization-activated cyclic nucleotide-gated channel, type 4 that is essential for the proper generation of pacemaker potentials in the sinoatrial node. The HCN4 gene is often present in targeted genetic testing panels for various cardiac conduction system disorders and there are several reports of HCN4 variants associated with conduction disorders. Here, we report the in vitro functional characterization of four rare variants of uncertain significance (VUS) in HCN4, identified through testing a cohort of 296 sudden unexpected natural deaths. The variants are all missense alterations, leading to single amino acid changes: p.E66Q in the N-terminus, p.D546N in the C-linker domain, and both p.S935Y and p.R1044Q in the C-terminus distal to the CNBD. We also identified a likely benign variant, p. P1063T, which has a high minor allele frequency in the gnomAD, which is utilized here as a negative control. Three of the HCN4 VUS (p.E66Q, p.S935Y, and p.R1044Q) had electrophysiological characteristics similar to the wild-type channel, suggesting that these variants are benign. In contrast, the p.D546N variant in the C-linker domain exhibited a larger current density, slower activation, and was unresponsive to cyclic adenosine monophosphate (cAMP) compared to wild-type. With functional assays, we reclassified three rare HCN4 VUS to likely benign variants, eliminating the necessity for costly and time-consuming further study. Our studies also provide a new lead to investigate how a VUS located in the C-linker connecting the pore to the cAMP binding domain may affect the channel open state probability and cAMP response.


Assuntos
Morte Súbita Cardíaca , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/classificação , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/genética , Proteínas Musculares/classificação , Proteínas Musculares/genética , Canais de Potássio/classificação , Canais de Potássio/genética , Células Cultivadas , Fenômenos Eletrofisiológicos , Variação Genética , Humanos , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/fisiologia , Proteínas Musculares/fisiologia , Canais de Potássio/fisiologia
15.
Heliyon ; 4(12): e01015, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30582040

RESUMO

BACKGROUND: Molecular testing of the deceased (Molecular Autopsy) is an overlooked area in the United States healthcare system and is not covered by medical insurance, leading to ineffective care for surviving families of thousands of sudden unexpected natural deaths each year. We demonstrated the precision management of surviving family members through the discovery of a novel de novo pathogenic variant in a decedent. METHODS: Forensic investigation and molecular autopsy were performed on an 18-year-old female who died suddenly and unexpectedly. Co-segregation family study of the first-degree relatives and functional characterization of the variant were conducted. FINDINGS: We identified a novel nonsense variant, NP_000229.1:p.Gln1068Ter, in the long QT syndrome type II gene KCNH2 in the decedent. This finding correlated with her ante-mortem electrocardiograms. Patch clamp functional studies using transfected COS-7 cells show that hERG-ΔQ1068 has a mixed phenotype, with both gain- (negative voltage shift of steady-state activation curve, the positive shift of the steady-state inactivation curve, and accelerated activation) and loss-of function (reduced current density, reduced surface expression and accelerated deactivation) hallmarks. Loss of cumulative activation during rapid pacing demonstrates that the loss-of-function phenotype predominates. The wild-type channel did not rescue the hERG-ΔQ1068 defects, demonstrating haploinsufficiency of the heterozygous state. Targeted variant testing in the family showed that the variant in KCNH2 arose de novo, which eliminated the need for exhaustive genome testing and annual cardiac follow-up for the parents and four siblings. INTERPRETATION: Molecular testing enables accurate determination of natural causes of death and precision care of the surviving family members in a time and cost-saving manner. We advocate for molecular autopsy being included under the healthcare coverage in US.

16.
Forensic Sci Int ; 293: 37-46, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30391667

RESUMO

BACKGROUND: The TRPM4 gene encodes the subunit of the Ca2+-activated nonselective cation channel, which is enriched in the specialized cardiac conduction system and Purkinje fibers. To date, several putative disease-causing variants in TRPM4 have been reported to be associated with cardiac arrhythmia and progressive conduction disease. Here, we report the functional effects of previously uncharacterized variants of uncertain significance (VUS) that we have found while performing a "genetic autopsy" in individuals who have suffered sudden unexpected death (SUD) in the New York City area. METHODS AND RESULTS: We have identified thirteen uncommon missense VUS in TRPM4 by testing 95 targeted genes implicated in channelopathy and cardiomyopathy in 330 cases of SUD. In several cases there were co-existing VUS in one or more other genes that were tested. We selected four TRPM4 VUS (C20S, A380V, L595V and I1082S) for functional characterization, since these cases lacked detectable variants in other genes of our testing panel. Two of the cases were infants, one was a child and one an adult. RNA-seq data analysis showed that the longer TRPM4b splice variant is predominantly expressed in adult and fetal human heart. We therefore used site-directed mutagenesis to introduce these variants in a TRPM4b cDNA. HEK293 cells were transfected with the cDNAs and patch clamping was performed to assess the functional consequences of the TRPM4 mutants. The TRPM4 current was recorded in excised patches and was significantly reduced by each of the mutants. The total protein level of TRPM4-C20S was markedly decreased, whereas the A380V and L595V mutants exhibited decreased surface expression. The TRPM4-A380V current rapidly desensitized following patch excision. CONCLUSIONS: Each of the VUS tested caused a defect in TRPM4 channel function via distinctly different mechanisms, hence, it lays the foundation for further co-segregation family studies and animal studies of the TRPM4 variants.


Assuntos
Morte Súbita/etiologia , Mutação de Sentido Incorreto , Canais de Cátion TRPM/genética , Adolescente , Adulto , Processamento Alternativo , Canalopatias/genética , Criança , Pré-Escolar , Morte Súbita/epidemiologia , Feminino , Genética Forense , Células HEK293 , Humanos , Lactente , Masculino , Mutagênese Sítio-Dirigida , Miocárdio/metabolismo , New York/epidemiologia , Isoformas de Proteínas/metabolismo , Análise de Sequência de RNA , Transfecção , Adulto Jovem
17.
Diabetes ; 67(5): 849-860, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29440278

RESUMO

Protein histidine phosphatase 1 (PHPT-1) is an evolutionarily conserved 14-kDa protein that dephosphorylates phosphohistidine. PHPT-1-/- mice were generated to gain insight into the role of PHPT-1 and histidine phosphorylation/dephosphorylation in mammalian biology. PHPT-1-/- mice exhibited neonatal hyperinsulinemic hypoglycemia due to impaired trafficking of KATP channels to the plasma membrane in pancreatic ß-cells in response to low glucose and leptin and resembled patients with congenital hyperinsulinism (CHI). The defect in KATP channel trafficking in PHPT-1-/- ß-cells was due to the failure of PHPT-1 to directly activate transient receptor potential channel 4 (TRPC4), resulting in decreased Ca2+ influx and impaired downstream activation of AMPK. Thus, these studies demonstrate a critical role for PHPT-1 in normal pancreatic ß-cell function and raise the possibility that mutations in PHPT-1 and/or TRPC4 may account for yet to be defined cases of CHI.


Assuntos
Histidina/metabolismo , Hiperinsulinismo/genética , Hipoglicemia/genética , Células Secretoras de Insulina/metabolismo , Canais KATP/metabolismo , Monoéster Fosfórico Hidrolases/genética , Transporte Proteico/genética , Animais , Animais Recém-Nascidos , Cálcio/metabolismo , Hiperinsulinismo Congênito/genética , Hiperinsulinismo Congênito/metabolismo , Modelos Animais de Doenças , Hiperinsulinismo/metabolismo , Hipoglicemia/metabolismo , Camundongos , Camundongos Knockout , Técnicas de Patch-Clamp , Monoéster Fosfórico Hidrolases/metabolismo , Fosforilação/genética , Canais de Cátion TRPC/metabolismo
18.
FASEB J ; 32(3): 1613-1625, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29133341

RESUMO

ATP-sensitive K+ (KATP) channels uniquely link cellular energy metabolism to membrane excitability and are expressed in diverse cell types that range from the endocrine pancreas to neurons and smooth, skeletal, and cardiac muscle. A decrease in the surface expression of KATP channels has been linked to various disorders, including dysregulated insulin secretion, abnormal blood pressure, and impaired resistance to cardiac injury. In contrast, up-regulation of KATP channel surface expression may be protective, for example, by mediating the beneficial effect of ischemic preconditioning. Molecular mechanisms that regulate KATP channel trafficking are poorly understood. Here, we used cellular assays with immunofluorescence, surface biotinylation, and patch clamping to demonstrate that Eps15 homology domain-containing protein 2 (EHD2) is a novel positive regulator of KATP channel trafficking to increase surface KATP channel density. EHD2 had no effect on cardiac Na+ channels (Nav1.5). The effect is specific to EHD2 as other members of the EHD family-EHD1, EHD3, and EHD4-had no effect on KATP channel surface expression. EHD2 did not directly affect KATP channel properties as unitary conductance and ATP sensitivity were unchanged. Instead, we observed that the mechanism by which EHD2 increases surface expression is by stabilizing KATP channel-containing caveolar structures, which results in a reduced rate of endocytosis. EHD2 also regulated KATP channel trafficking in isolated cardiomyocytes, which validated the physiologic relevance of these observations. Pathophysiologically, EHD2 may be cardioprotective as a dominant-negative EHD2 mutant sensitized cardiomyocytes to ischemic damage. Our findings highlight EHD2 as a potential pharmacologic target in the treatment of diseases with KATP channel trafficking defects.-Yang, H. Q., Jana, K., Rindler, M. J., Coetzee, W. A. The trafficking protein, EHD2, positively regulates cardiac sarcolemmal KATP channel surface expression: role in cardioprotection.


Assuntos
Proteínas de Transporte/metabolismo , Canais KATP/metabolismo , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Sarcolema/metabolismo , Animais , Células COS , Proteínas de Transporte/genética , Chlorocebus aethiops , Células HEK293 , Humanos , Canais KATP/genética , Camundongos , Isquemia Miocárdica/genética , Isquemia Miocárdica/metabolismo , Isquemia Miocárdica/patologia , Miocárdio/patologia , Miócitos Cardíacos/patologia , Transporte Proteico , Ratos , Sarcolema/genética
19.
Nat Commun ; 8(1): 106, 2017 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-28740174

RESUMO

Plakophilin-2 (PKP2) is a component of the desmosome and known for its role in cell-cell adhesion. Mutations in human PKP2 associate with a life-threatening arrhythmogenic cardiomyopathy, often of right ventricular predominance. Here, we use a range of state-of-the-art methods and a cardiomyocyte-specific, tamoxifen-activated, PKP2 knockout mouse to demonstrate that in addition to its role in cell adhesion, PKP2 is necessary to maintain transcription of genes that control intracellular calcium cycling. Lack of PKP2 reduces expression of Ryr2 (coding for Ryanodine Receptor 2), Ank2 (coding for Ankyrin-B), Cacna1c (coding for CaV1.2) and Trdn (coding for triadin), and protein levels of calsequestrin-2 (Casq2). These factors combined lead to disruption of intracellular calcium homeostasis and isoproterenol-induced arrhythmias that are prevented by flecainide treatment. We propose a previously unrecognized arrhythmogenic mechanism related to PKP2 expression and suggest that mutations in PKP2 in humans may cause life-threatening arrhythmias even in the absence of structural disease.It is believed that mutations in desmosomal adhesion complex protein plakophilin 2 (PKP2) cause arrhythmia due to loss of cell-cell communication. Here the authors show that PKP2 controls the expression of proteins involved in calcium cycling in adult mouse hearts, and that lack of PKP2 can cause arrhythmia in a structurally normal heart.


Assuntos
Cálcio/metabolismo , Coração/fisiologia , Miocárdio/metabolismo , Placofilinas/genética , Transcrição Gênica , Animais , Arritmias Cardíacas/genética , Arritmias Cardíacas/fisiopatologia , Western Blotting , Expressão Gênica , Coração/fisiopatologia , Humanos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Confocal , Miocárdio/citologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/fisiologia , Placofilinas/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
20.
Pacing Clin Electrophysiol ; 40(6): 703-712, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28370132

RESUMO

BACKGROUND: Two genetic variants in SCN5A, encoding the Nav1.5 Na+ channel α-subunit, were found in a 5-month-old girl who died suddenly in her sleep. The first variant is a missense mutation, resulting in an amino acid change (Q1832E), which has been described (but not characterized) in a patient with Brugada syndrome. The second is a nonsense mutation that produces a premature stop codon and a C-terminal truncation (R1944Δ). METHODS AND RESULTS: To investigate their functional relevance with patch clamp experiments in transfected HEK-293 cells. The Q1832E mutation drastically reduced Nav1.5 current density. The R1944Δ C-terminal truncation had negligible effects on Nav1.5 current density. Neither of the mutations affected the voltage dependence of steady activation and inactivation or influenced the late Na+ current or the recovery from inactivation. Biochemical and immunofluorescent approaches demonstrated that the Q1832E mutation caused severe trafficking defects. Polymerase chain reaction cloning and sequencing the victim's genomic DNA allowed us to determine that the two variants were in trans. We investigated the functional consequences by coexpressing Nav1.5(Q1832E) and Nav1.5(R1944Δ), which led to a significantly reduced current amplitude relative to wild-type. CONCLUSIONS: These sudden infant death syndrome (SIDS)-related variants caused a severely dysfunctional Nav1.5 channel, which was mainly due to trafficking defects caused by the Q1832E mutation. The decreased current density is likely to be a major contributing factor to arrhythmogenesis in Brugada syndrome and the sudden death of this SIDS victim.


Assuntos
Ativação do Canal Iônico/genética , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Polimorfismo de Nucleotídeo Único/genética , Sódio/metabolismo , Morte Súbita do Lactente/genética , Morte Súbita Cardíaca , Feminino , Marcadores Genéticos/genética , Predisposição Genética para Doença/genética , Células HEK293 , Humanos , Incidência , Lactente , Mutação/genética , Fatores de Risco , Taxa de Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...