Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 7(47): 20220-6, 2015 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-26575478

RESUMO

The purpose of this work is a detailed comparison of the fundamental magnetic properties of nanocomposite systems consisting of Fe3O4 nanoparticle-loaded porous silicon as well as silicon nanotubes. Such composite structures are of potential merit in the area of magnetically guided drug delivery. For magnetic systems to be utilized in biomedical applications, there are certain magnetic properties that must be fulfilled. Therefore magnetic properties of embedded Fe3O4-nanoparticles in these nanostructured silicon host matrices, porous silicon and silicon nanotubes, are investigated. Temperature-dependent magnetic investigations have been carried out for four types of iron oxide particle sizes (4, 5, 8 and 10 nm). The silicon host, in interplay with the iron oxide nanoparticle size, plays a sensitive role. It is shown that Fe3O4 loaded porous silicon and SiNTs differ significantly in their magnetic behavior, especially the transition between superparamagnetic behavior and blocked state, due to host morphology-dependent magnetic interactions. Importantly, it is found that all investigated samples meet the magnetic precondition of possible biomedical applications of exhibiting a negligible magnetic remanence at room temperature.


Assuntos
Compostos Férricos/química , Nanopartículas de Magnetita/química , Nanocompostos/química , Silício/química , Cristalização , Sistemas de Liberação de Medicamentos , Nanotecnologia/métodos , Nanotubos/química , Tamanho da Partícula , Porosidade , Temperatura
2.
J Colloid Interface Sci ; 460: 339-48, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26364076

RESUMO

The introduction of biocompatible coatings onto nanoparticle surfaces can be synthetically challenging. In this work, calcium phosphate (brushite, CaHPO4⋅2H2O), iron oxide (hematite, α-Fe2O3), zinc oxide (ZnO), and CaHPO4@ZnO and α-Fe2O3@ZnO nanoparticles were synthesized and treated with the biocompatible, biodegradable, polysaccharide inulin {(2R,3S,4S,5R)-2-[[(2R,3S,4S,5R)-3,4-dihydroxy-2,5-bis(hydroxymethyl)oxolan-2-yl]oxymethyl]-5-(hydroxymethyl)oxolane-2,3,4-triol} under mild conditions. The products were fully characterized by Fourier transforms infrared (FTIR) spectroscopy, energy dispersive spectroscopy (EDS), dynamic light scattering (DLS), differential thermogravimetric/differential thermal analysis (TGA/DTA), transmission electron microscopy (TEM) and powder X-ray diffraction (XRD). Surface interactions among hematite and brushite with inulin are weak, but coating the nanoparticle surface with ZnO increased the affinity toward the polysaccharide. Inulin adsorption on the nanoparticle surface was confirmed by thermal and spectroscopic analyses. The nanoparticles had diameters ranging from 50 to 80nm, with nearly spherical morphology. The nanoparticles sizes, stability and solubility in water could make them useful as components for enriched foods.


Assuntos
Fosfatos de Cálcio/química , Materiais Revestidos Biocompatíveis/química , Compostos Férricos/química , Inulina/química , Nanopartículas Metálicas/química , Óxido de Zinco/química , Animais , Materiais Biocompatíveis , Alimentos Fortificados , Humanos , Luz , Microscopia Eletrônica de Transmissão , Nanopartículas/química , Nanotecnologia , Tamanho da Partícula , Polissacarídeos/química , Ligação Proteica , Espalhamento de Radiação , Espectrofotometria , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície , Temperatura , Termogravimetria , Água/química , Difração de Raios X
3.
J Chem Phys ; 120(18): 8716-23, 2004 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-15267802

RESUMO

Femtosecond pump-probe absorption spectroscopy is used to investigate the role of Er(3+) dopants in the early relaxation pathways of photoexcited Si nanocrystals. The fate of photoexcited electrons in three different Si nanostructures was studied and correlated with the effect of Er-doping and the nature of the dopant architecture. In Si nanocrystals without Er(3+) dopant, a trapping component was identified to be a major electron relaxation mechanism. Addition of Er(3+) ions into the core or surface shell of the nanocrystals was found to open up additional nonradiative relaxation pathways, which is attributed to Er-induced trap states in the Si host. Analysis of the photodynamics of the Si nanocrystal samples reveals an electron trapping mechanism involving trap-to-trap hopping in the doped nanocrystals, whereby the density of deep traps seem to increase with the presence of erbium. To gain additional insights on the relative depths of the trapping sites on the investigated nanostructures, benzoquinone was used as a surface adsorbed electron acceptor to facilitate photoinduced electron transfer across the nanocrystal surface and subsequently assist in back electron transfer. The established reduction potential (-0.45 V versus SCE) of the electron acceptor helped reveal that the erbium-doped nanocrystal samples have deeper trapping sites than the undoped Si. Furthermore, the measurements indicate that internally Er-doped Si have relatively deeper trapping sites than the erbium surface-enriched nanocrystals. The electron-shuttling experiment also reveals that the back electron transfer seems not to recover completely to the ground state in the doped Si nanocrystals, which is explained by a mechanism whereby the electrons are captured by deep trapping sites induced by erbium addition in the Si lattice.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA