Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 144
Filtrar
1.
Mob DNA ; 14(1): 18, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37990347

RESUMO

In November 2022 the first Dark Genome Symposium was held in Boston, USA. The meeting was hosted by Rome Therapeutics and Enara Bio, two biotechnology companies working on translating our growing understanding of this vast genetic landscape into therapies for human disease. The spirit and ambition of the meeting was one of shared knowledge, looking to strengthen the network of researchers engaged in the field. The meeting opened with a welcome from Rosana Kapeller and Kevin Pojasek followed by a first session of field defining talks from key academics in the space. A series of panels, bringing together academia and industry views, were then convened covering a wide range of pertinent topics. Finally, Richard Young and David Ting gave their views on the future direction and promise for patient impact inherent in the growing understanding of the Dark Genome.

2.
PLoS Biol ; 20(10): e3001826, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36256614

RESUMO

Human endogenous retrovirus (HERV) transcripts are known to be highly expressed in cancers, yet their activity in nondiseased tissue is largely unknown. Using the GTEx RNA-seq dataset from normal tissue sampled at autopsy, we characterized individual expression of the recent HERV-K (HML-2) provirus group across 13,000 different samples of 54 different tissues from 948 individuals. HML-2 transcripts could be identified in every tissue sampled and were elevated in the cerebellum, pituitary, testis, and thyroid. A total of 37 different individual proviruses were expressed in 1 or more tissues, representing all 3 LTR5 subgroups. Nine proviruses were identified as having long terminal repeat (LTR)-driven transcription, 7 of which belonged to the most recent LTR5HS subgroup. Proviruses of different subgroups displayed a bias in tissue expression, which may be associated with differences in transcription factor binding sites in their LTRs. Provirus expression was greater in evolutionarily older proviruses with an earliest shared ancestor of gorilla or older. HML-2 expression was significantly affected by biological sex in 1 tissue, while age and timing of death (Hardy score) had little effect. Proviruses containing intact gag, pro, and env open reading frames (ORFs) were expressed in the dataset, with almost every tissue measured potentially expressing at least 1 intact ORF (gag).


Assuntos
Retrovirus Endógenos , Provírus , Masculino , Humanos , Provírus/genética , Retrovirus Endógenos/genética , Sequências Repetidas Terminais/genética , Fases de Leitura Aberta , Fatores de Transcrição/metabolismo
3.
J Virol ; 96(13): e0012222, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35674431

RESUMO

Effective strategies to eliminate human immunodeficiency virus type 1 (HIV-1) reservoirs are likely to require more thorough characterizations of proviruses that persist on antiretroviral therapy (ART). The rarity of infected CD4+ T-cells and related technical challenges have limited the characterization of integrated proviruses. Current approaches using next-generation sequencing can be inefficient and limited sequencing depth can make it difficult to link proviral sequences to their respective integration sites. Here, we report on an efficient method by which HIV-1 proviruses and their sites of integration are amplified and sequenced. Across five HIV-1-positive individuals on clinically effective ART, a median of 41.2% (n = 88 of 209) of amplifications yielded near-full-length proviruses and their 5'-host-virus junctions containing a median of 430 bp (range, 18 to 1,363 bp) of flanking host sequence. Unexpectedly, 29.5% (n = 26 of 88) of the sequenced proviruses had structural asymmetries between the 5' and 3' long terminal repeats (LTRs), commonly in the form of major 3' deletions. Sequence-intact proviruses were detected in 3 of 5 donors, and infected CD4+ T-cell clones were detected in 4 of 5 donors. The accuracy of the method was validated by amplifying and sequencing full-length proviruses and flanking host sequences directly from peripheral blood mononuclear cell DNA. The individual proviral sequencing assay (IPSA) described here can provide an accurate, in-depth, and longitudinal characterization of HIV-1 proviruses that persist on ART, which is important for targeting proviruses for elimination and assessing the impact of interventions designed to eradicate HIV-1. IMPORTANCE The integration of human immunodeficiency virus type 1 (HIV-1) into chromosomal DNA establishes the long-term persistence of HIV-1 as proviruses despite effective antiretroviral therapy (ART). Characterizing proviruses is difficult because of their rarity in individuals on long-term suppressive ART, their highly polymorphic sequences and genetic structures, and the need for efficient amplification and sequencing of the provirus and its integration site. Here, we describe a novel, integrated, two-step method (individual proviral sequencing assay [IPSA]) that amplifies the host-virus junction and the full-length provirus except for the last 69 bp of the 3' long terminal repeat (LTR). Using this method, we identified the integration sites of proviruses, including those that are sequence intact and replication competent or defective. Importantly, this new method identified previously unreported asymmetries between LTRs that have implications for how proviruses are detected and quantified. The IPSA method reported is unaffected by LTR asymmetries, permitting a more accurate and comprehensive characterization of the proviral landscape.


Assuntos
HIV-1 , Provírus , Sequências Repetidas Terminais , Infecções por HIV/virologia , HIV-1/genética , HIV-1/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Leucócitos Mononucleares/virologia , Provírus/genética , Provírus/metabolismo , Sequências Repetidas Terminais/genética
4.
Viruses ; 14(1)2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-35062308

RESUMO

COVID-19 vaccines were first administered on 15 December 2020, marking an important transition point for the spread of SARS-CoV-2 in the United States (U.S.). Prior to this point in time, the virus spread to an almost completely immunologically naïve population, whereas subsequently, vaccine-induced immune pressure and prior infections might be expected to influence viral evolution. Accordingly, we conducted a study to characterize the spread of SARS-CoV-2 in the U.S. pre-vaccination, investigate the depth and uniformity of genetic surveillance during this period, and measure and otherwise characterize changing viral genetic diversity, including by comparison with more recently emergent variants of concern (VOCs). In 2020, SARS-CoV-2 spread across the U.S. in three phases distinguishable by peaks in the numbers of infections and shifting geographical distributions. Virus was genetically sampled during this period at an overall rate of ~1.2%, though there was a substantial mismatch between case rates and genetic sampling nationwide. Viral genetic diversity tripled over this period but remained low in comparison to other widespread RNA virus pathogens, and although 54 amino acid changes were detected at frequencies exceeding 5%, linkage among them was not observed. Based on our collective observations, our analysis supports a targeted strategy for worldwide genetic surveillance as perhaps the most sensitive and efficient means of detecting new VOCs.


Assuntos
COVID-19/virologia , SARS-CoV-2/genética , COVID-19/epidemiologia , COVID-19/prevenção & controle , Vacinas contra COVID-19/imunologia , Evolução Molecular , Variação Genética , Humanos , Mutação , Filogenia , SARS-CoV-2/classificação , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Estados Unidos/epidemiologia
5.
Viruses ; 13(10)2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34696507

RESUMO

HIV infection is not curable with current antiretroviral therapy (ART) because a small fraction of CD4+ T cells infected prior to ART initiation persists. Understanding the nature of this latent reservoir and how it is created is essential to development of potentially curative strategies. The discovery that a large fraction of the persistently infected cells in individuals on suppressive ART are members of large clones greatly changed our view of the reservoir and how it arises. Rather than being the products of infection of resting cells, as was once thought, HIV persistence is largely or entirely a consequence of infection of cells that are either expanding or are destined to expand, primarily due to antigen-driven activation. Although most of the clones carry defective proviruses, some carry intact infectious proviruses; these clones comprise the majority of the reservoir. A large majority of both the defective and the intact infectious proviruses in clones of infected cells are transcriptionally silent; however, a small fraction expresses a few copies of unspliced HIV RNA. A much smaller fraction is responsible for production of low levels of infectious virus, which can rekindle infection when ART is stopped. Further understanding of the reservoir will be needed to clarify the mechanism(s) by which provirus expression is controlled in the clones of cells that constitute the reservoir.


Assuntos
Linfócitos T CD4-Positivos/virologia , Infecções por HIV/genética , Latência Viral/fisiologia , Antirretrovirais/uso terapêutico , Linfócitos T CD4-Positivos/metabolismo , DNA Viral/genética , Infecções por HIV/virologia , HIV-1/patogenicidade , Humanos , Provírus/genética , Carga Viral/genética , Viremia/virologia , Latência Viral/efeitos dos fármacos , Latência Viral/genética , Replicação Viral/efeitos dos fármacos , Replicação Viral/genética , Replicação Viral/fisiologia
6.
Viruses ; 13(7)2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-34202310

RESUMO

Efforts to cure HIV-1 infection require better quantification of the HIV-1 reservoir, particularly the clones of cells harboring replication-competent (intact) proviruses, termed repliclones. The digital droplet PCR assays commonly used to quantify intact proviruses do not differentiate among specific repliclones, thus the dynamics of repliclones are not well defined. The major challenge in tracking repliclones is the relative rarity of the cells carrying specific intact proviruses. To date, detection and accurate quantification of repliclones requires in-depth integration site sequencing. Here, we describe a simplified workflow using integration site-specific qPCR (IS-qPCR) to determine the frequencies of the proviruses integrated in individual repliclones. We designed IS-qPCR to determine the frequencies of repliclones and clones of cells that carry defective proviruses in samples from three donors. Comparing the results of IS-qPCR with deep integration site sequencing data showed that the two methods yielded concordant estimates of clone frequencies (r = 0.838). IS-qPCR is a potentially valuable tool that can be applied to multiple samples and cell types over time to measure the dynamics of individual repliclones and the efficacy of treatments designed to eliminate them.


Assuntos
Linfócitos T CD4-Positivos/virologia , Infecções por HIV/virologia , HIV-1/fisiologia , Leucócitos Mononucleares/virologia , Provírus/fisiologia , Reação em Cadeia da Polimerase em Tempo Real , Integração Viral , 5'-Nucleotidase/genética , Linhagem Celular , Glicoproteínas/genética , HIV-1/genética , Humanos , Provírus/genética , Carga Viral
7.
medRxiv ; 2021 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-34127980

RESUMO

In 2020, SARS-CoV-2 spread across the United States (U.S.) in three phases distinguished by peaks in the numbers of infections and shifting geographical distribution. We investigated the viral genetic diversity in each phase using sequences publicly available prior to December 15 th , 2020, when vaccination was initiated in the U.S. In Phase 1 (winter/spring), sequences were already dominated by the D614G Spike mutation and by Phase 3 (fall), genetic diversity of the viral population had tripled and at least 54 new amino acid changes had emerged at frequencies above 5%, several of which were within known antibody epitopes. These findings highlight the need to track the evolution of SARS-CoV-2 variants in the U.S. to ensure continued efficacy of vaccines and antiviral treatments. ONE SENTENCE SUMMARY: SARS-CoV-2 genetic diversity in the U.S. increased 3-fold in 2020 and 54 emergent nonsynonymous mutations were detected.

8.
Retrovirology ; 18(1): 16, 2021 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-34176496

RESUMO

The characterisation of the HIV-1 reservoir, which consists of replication-competent integrated proviruses that persist on antiretroviral therapy (ART), is made difficult by the rarity of intact proviruses relative to those that are defective. While the only conclusive test for the replication-competence of HIV-1 proviruses is carried out in cell culture, genetic characterization of genomes by near full-length (NFL) PCR and sequencing can be used to determine whether particular proviruses have insertions, deletions, or substitutions that render them defective. Proviruses that are not excluded by having such defects can be classified as genetically intact and, possibly, replication competent. Identifying and quantifying proviruses that are potentially replication-competent is important for the development of strategies towards a functional cure. However, to date, there are no programs that can be incorporated into deep-sequencing pipelines for the automated characterization and annotation of HIV genomes. Existing programs that perform this work require manual intervention, cannot be widely installed, and do not have easily adjustable settings. Here, we present HIVIntact, a python-based software tool that characterises genomic defects in NFL HIV-1 sequences, allowing putative intact genomes to be identified in-silico. Unlike other applications that assess the genetic intactness of HIV genomes, this tool can be incorporated into existing sequence-analysis pipelines and applied to large next-generation sequencing datasets.


Assuntos
DNA Viral/genética , Genoma Viral , HIV-1/genética , Software/normas , Humanos , Provírus/genética , Integração Viral , Latência Viral
9.
Viruses ; 13(5)2021 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-33946976

RESUMO

The latent HIV-1 reservoir is comprised of stably integrated and intact proviruses with limited to no viral transcription. It has been proposed that latent infection may be maintained by methylation of pro-viral DNA. Here, for the first time, we investigate the cytosine methylation of a replication competent provirus (AMBI-1) found in a T cell clone in a donor on antiretroviral therapy (ART). Methylation profiles of the AMBI-1 provirus were compared to other proviruses in the same donor and in samples from three other individuals on ART, including proviruses isolated from lymph node mononuclear cells (LNMCs) and peripheral blood mononuclear cells (PBMCs). We also evaluated the apparent methylation of cytosines outside of CpG (i.e., CpH) motifs. We found no evidence for methylation in AMBI-1 or any other provirus tested within the 5' LTR promoter. In contrast, CpG methylation was observed in the env-tat-rev overlapping reading frame. In addition, we found evidence for differential provirus methylation in cells isolated from LNMCs vs. PBMCs in some individuals, possibly from the expansion of infected cell clones. Finally, we determined that apparent low-level methylation of CpH cytosines is consistent with occasional bisulfite reaction failures. In conclusion, our data do not support the proposition that latent HIV infection is associated with methylation of the HIV 5' LTR promoter.


Assuntos
Ilhas de CpG , Metilação de DNA , DNA Viral , Infecções por HIV/genética , Infecções por HIV/virologia , HIV-1/genética , Provírus/genética , Terapia Antirretroviral de Alta Atividade , Regulação Viral da Expressão Gênica , Genoma Viral , Genômica/métodos , Infecções por HIV/tratamento farmacológico , Repetição Terminal Longa de HIV/genética , Humanos , Latência Viral/genética
10.
mBio ; 12(2)2021 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-33832973

RESUMO

Little is known about the emergence and persistence of human immunodeficiency virus (HIV)-infected T-cell clones in perinatally infected children. We analyzed peripheral blood mononuclear cells (PBMCs) for clonal expansion in 11 children who initiated antiretroviral therapy (ART) between 1.8 and 17.4 months of age and with viremia suppressed for 6 to 9 years. We obtained 8,662 HIV type 1 (HIV-1) integration sites from pre-ART samples and 1,861 sites from on-ART samples. Expanded clones of infected cells were detected pre-ART in 10/11 children. In 8 children, infected cell clones detected pre-ART persisted for 6 to 9 years on ART. A comparison of integration sites in the samples obtained on ART with healthy donor PBMCs infected ex vivo showed selection for cells with proviruses integrated in BACH2 and STAT5B Our analyses indicate that, despite marked differences in T-cell composition and dynamics between children and adults, HIV-infected cell clones are established early in children, persist for up to 9 years on ART, and can be driven by proviral integration in proto-oncogenes.IMPORTANCE HIV-1 integrates its genome into the DNA of host cells. Consequently, HIV-1 genomes are copied with the host cell DNA during cellular division. Pediatric immune systems differ significantly from adults, consisting primarily of naive T cells, which have low expression of the HIV-1 coreceptor CCR5. This difference may result in variances in the number or size of infected cell clones that persist in children on ART. Here, we provide the most extensive analysis of the integration landscape of HIV-1 in children. We found that, despite the largely naive cell populations in neonatal immune systems, patterns of HIV-1 integration and the size of infected cell clones are as large and widespread as those in adults. Furthermore, selection for integration events in proto-oncogenes were observed in children despite early ART. If such cell clones persist for the life span of these individuals, there may be long-term consequences that have yet to be realized.


Assuntos
Infecções por HIV/imunologia , Infecções por HIV/virologia , HIV-1/genética , Linfócitos T/virologia , Integração Viral , Antirretrovirais/uso terapêutico , Linfócitos T CD4-Positivos/virologia , Criança , Ensaios Clínicos Fase III como Assunto , DNA Viral/genética , Feminino , Infecções por HIV/tratamento farmacológico , HIV-1/patogenicidade , Humanos , Masculino , Provírus/genética , Ensaios Clínicos Controlados Aleatórios como Assunto , Linfócitos T/classificação , Linfócitos T/imunologia , Fatores de Tempo , Carga Viral , Viremia , Replicação Viral
11.
PLoS Pathog ; 17(4): e1009141, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33826675

RESUMO

HIV persists during antiretroviral therapy (ART) as integrated proviruses in cells descended from a small fraction of the CD4+ T cells infected prior to the initiation of ART. To better understand what controls HIV persistence and the distribution of integration sites (IS), we compared about 15,000 and 54,000 IS from individuals pre-ART and on ART, respectively, with approximately 395,000 IS from PBMC infected in vitro. The distribution of IS in vivo is quite similar to the distribution in PBMC, but modified by selection against proviruses in expressed genes, by selection for proviruses integrated into one of 7 specific genes, and by clonal expansion. Clones in which a provirus integrated in an oncogene contributed to cell survival comprised only a small fraction of the clones persisting in on ART. Mechanisms that do not involve the provirus, or its location in the host genome, are more important in determining which clones expand and persist.


Assuntos
Antirretrovirais/uso terapêutico , Infecções por HIV/virologia , Leucócitos Mononucleares/virologia , Oncogenes/genética , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/virologia , DNA Viral/genética , Humanos , Oncogenes/imunologia , Provírus/genética , Replicação Viral/genética
12.
Mol Biol Cell ; 32(2): 91-97, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33448895

RESUMO

The simultaneous discovery in 1970 of reverse transcriptase in virions of retroviruses by Howard Temin and David Baltimore was perhaps the most dramatic scientific moment of the second half of the 20th century. Ten years previously, Temin's observation of cells transformed by Rous Sarcoma virus led him to the conclusion that retroviruses replicate through a DNA intermediate he called the provirus. This heretical hypothesis was greeted with derision by fellow scientists; Temin and Baltimore performed a simple experiment, rapidly reproduced, and convincing to all. Its result was a major paradigm shift-reversal of the central dogma of molecular biology. It immediately grabbed the attention of both the scientific and lay press. It also came at a key time for cancer research, at the start of the "War on Cancer." As a theoretical base and fundamental molecular tool, it enabled a decade of (largely fruitless) search for human oncogenic retroviruses but laid the foundation for the discovery of HIV 13 years later, leading to the development of effective therapy. I had the good fortune, as a student in Temin's lab, to witness these events. I am honored to be able to share my recollection on the occasion of their 50th anniversary.


Assuntos
DNA Polimerase Dirigida por RNA/história , Animais , Vírus de DNA/enzimologia , História do Século XX , Humanos , Camundongos
13.
Proc Natl Acad Sci U S A ; 117(52): 32880-32882, 2020 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-33318172

RESUMO

In vivo clonal expansion of HIV-infected T cells is an important mechanism of viral persistence. In some cases, clonal expansion is driven by HIV proviral DNA integrated into one of a handful of genes. To investigate this phenomenon in vitro, we infected primary CD4+ T cells with an HIV construct expressing GFP and, after nearly 2 mo of culture and multiple rounds of activation, analyzed the resulting integration site distribution. In each of three replicates from each of two donors, we detected large clusters of integration sites with multiple breakpoints, implying clonal selection. These clusters all mapped to a narrow region within the STAT3 gene. The presence of hybrid transcripts splicing HIV to STAT3 sequences supports a model of LTR-driven STAT3 overexpression as a driver of preferential growth. Thus, HIV integration patterns linked to selective T cell outgrowth can be reproduced in cell culture. The single report of an HIV provirus in a case of AIDS-associated B-cell lymphoma with an HIV provirus in the same part of STAT3 also has implications for HIV-induced malignancy.


Assuntos
Proliferação de Células , HIV/fisiologia , Provírus/fisiologia , Linfócitos T/virologia , Integração Viral , Células Cultivadas , Evolução Clonal , DNA Viral/genética , HIV/genética , Humanos , Provírus/genética , Fator de Transcrição STAT3/genética , Linfócitos T/fisiologia
14.
J Clin Invest ; 130(11): 5847-5857, 2020 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-33016926

RESUMO

BACKGROUNDHIV-1 viremia that is not suppressed by combination antiretroviral therapy (ART) is generally attributed to incomplete medication adherence and/or drug resistance. We evaluated individuals referred by clinicians for nonsuppressible viremia (plasma HIV-1 RNA above 40 copies/mL) despite reported adherence to ART and the absence of drug resistance to the current ART regimen.METHODSSamples were collected from at least 2 time points from 8 donors who had nonsuppressible viremia for more than 6 months. Single templates of HIV-1 RNA obtained from plasma and viral outgrowth of cultured cells and from proviral DNA were amplified by PCR and sequenced for evidence of clones of cells that produced infectious viruses. Clones were confirmed by host-proviral integration site analysis.RESULTSHIV-1 genomic RNA with identical sequences were identified in plasma samples from all 8 donors. The identical viral RNA sequences did not change over time and did not evolve resistance to the ART regimen. In 4 of the donors, viral RNA sequences obtained from plasma matched those sequences from viral outgrowth cultures, indicating that the viruses were replication competent. Integration sites for infectious proviruses from those 4 donors were mapped to the introns of the MATR3, ZNF268, ZNF721/ABCA11P, and ABCA11P genes. The sizes of the clones were estimated to be from 50 million to 350 million cells.CONCLUSIONThese findings show that clones of HIV-1-infected cells producing virus can cause failure of ART to suppress viremia. The mechanisms involved in clonal expansion and persistence need to be defined to effectively target viremia and the HIV-1 reservoir.FUNDINGNational Cancer Institute, NIH; Howard Hughes Medical Research Fellows Program, Howard Hughes Medical Institute; Bill and Melinda Gates Foundation; Office of AIDS Research; American Cancer Society; National Cancer Institute through a Leidos subcontract; National Institute for Allergy and Infectious Diseases, NIH, to the I4C Martin Delaney Collaboratory; University of Rochester Center for AIDS Research and University of Rochester HIV/AIDS Clinical Trials Unit.


Assuntos
Infecções por HIV , HIV-1/imunologia , RNA Viral/imunologia , Linfócitos T , Viremia , Integração Viral , Antirretrovirais , Feminino , Infecções por HIV/genética , Infecções por HIV/imunologia , HIV-1/genética , Humanos , Íntrons/imunologia , Masculino , RNA Viral/genética , Linfócitos T/imunologia , Linfócitos T/virologia , Viremia/genética , Viremia/imunologia
15.
AIDS Res Hum Retroviruses ; 36(11): 942-947, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32683881

RESUMO

The prevalence of HIV-1 drug resistance is increasing worldwide and monitoring its emergence is important for the successful management of populations receiving combination antiretroviral therapy. It is likely that pre-existing drug resistance mutations linked on the same viral genomes are predictive of treatment failure. Because of the large number of sequences generated by ultrasensitive single-genome sequencing (uSGS) and other similar next-generation sequencing methods, it is difficult to assess each sequence individually for linked drug resistance mutations. Several software/programs exist to report the frequencies of individual mutations in large data sets, but they provide no information on linkage of resistance mutations. In this study, we report the HIV-DRLink program, a research tool that provides resistance mutation frequencies as well as their genetic linkage by parsing and summarizing the Sierra output from the Stanford HIV Database. The HIV-DRLink program should only be used on data sets generated by methods that eliminate artifacts due to polymerase chain reaction recombination, for example, standard single-genome sequencing or uSGS. HIV-DRLink is exclusively a research tool and is not intended to inform clinical decisions.


Assuntos
Fármacos Anti-HIV , Infecções por HIV , HIV-1 , Fármacos Anti-HIV/uso terapêutico , Antirretrovirais/farmacologia , Antirretrovirais/uso terapêutico , Farmacorresistência Viral/genética , Infecções por HIV/tratamento farmacológico , HIV-1/genética , Humanos , Mutação
16.
BMC Genomics ; 21(1): 517, 2020 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-32727364

RESUMO

An amendment to this paper has been published and can be accessed via the original article.

17.
BMC Genomics ; 21(1): 216, 2020 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-32151239

RESUMO

BACKGROUND: All retroviruses, including human immunodeficiency virus (HIV), must integrate a DNA copy of their genomes into the genome of the infected host cell to replicate. Although integrated retroviral DNA, known as a provirus, can be found at many sites in the host genome, integration is not random. The adaption of linker-mediated PCR (LM-PCR) protocols for high-throughput integration site mapping, using randomly-sheared genomic DNA and Illumina paired-end sequencing, has dramatically increased the number of mapped integration sites. Analysis of samples from human donors has shown that there is clonal expansion of HIV infected cells and that clonal expansion makes an important contribution to HIV persistence. However, analysis of HIV integration sites in samples taken from patients requires extensive PCR amplification and high-throughput sequencing, which makes the methodology prone to certain specific artifacts. RESULTS: To address the problems with artifacts, we use a comprehensive approach involving experimental procedures linked to a bioinformatics analysis pipeline. Using this combined approach, we are able to reduce the number of PCR/sequencing artifacts that arise and identify the ones that remain. Our streamlined workflow combines random cleavage of the DNA in the samples, end repair, and linker ligation in a single step. We provide guidance on primer and linker design that reduces some of the common artifacts. We also discuss how to identify and remove some of the common artifacts, including the products of PCR mispriming and PCR recombination, that have appeared in some published studies. Our improved bioinformatics pipeline rapidly parses the sequencing data and identifies bona fide integration sites in clonally expanded cells, producing an Excel-formatted report that can be used for additional data processing. CONCLUSIONS: We provide a detailed protocol that reduces the prevalence of artifacts that arise in the analysis of retroviral integration site data generated from in vivo samples and a bioinformatics pipeline that is able to remove the artifacts that remain.


Assuntos
Infecções por HIV/genética , HIV/fisiologia , Integração Viral , Mapeamento Cromossômico , Biologia Computacional , DNA Viral , Genoma Humano , Humanos , Reação em Cadeia da Polimerase , Provírus/fisiologia , Análise de Sequência de DNA
18.
Viruses ; 12(2)2020 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-31991737

RESUMO

Combination antiretroviral therapy (cART) controls but does not eradicate HIV infection; HIV persistence is the principal obstacle to curing infections. The proportion of defective proviruses increases during cART, but the dynamics of this process are not well understood, and a quantitative analysis of how the proviral landscape is reshaped after cART is initiated is critical to understanding how HIV persists. Here, we studied longitudinal samples from HIV infected individuals undergoing long term cART using multiplexed Droplet Digital PCR (ddPCR) approaches to quantify the proportion of deleted proviruses in lymphocytes. In most individuals undergoing cART, HIV proviruses that contain gag are lost more quickly than those that lack gag. Increases in the fraction of gag-deleted proviruses occurred only after 1-2 years of therapy, suggesting that the immune system, and/or toxicity of viral re-activation helps to gradually shape the proviral landscape. After 10-15 years on therapy, there were as many as 3.5-5 times more proviruses in which gag was deleted or highly defective than those containing intact gag. We developed a provirus-specific ddPCR approach to quantify individual clones. Investigation of a clone of cells containing a deleted HIV provirus integrated in the HORMAD2 gene revealed that the cells underwent a massive expansion shortly after cART was initiated until the clone, which was primarily in effector memory cells, dominated the population of proviruses for over 6 years. The expansion of this HIV-infected clone had substantial effects on the overall proviral population.


Assuntos
Fármacos Anti-HIV/uso terapêutico , Infecções por HIV/tratamento farmacológico , Infecções por HIV/virologia , HIV-1/genética , HIV-1/isolamento & purificação , Leucócitos Mononucleares/virologia , Provírus/isolamento & purificação , Terapia Antirretroviral de Alta Atividade , Linfócitos T CD4-Positivos/virologia , Proteínas de Ciclo Celular/genética , DNA Viral/sangue , DNA Viral/genética , Vírus Defeituosos/genética , Genes gag , Repetição Terminal Longa de HIV , HIV-1/efeitos dos fármacos , Humanos , Memória Imunológica , Reação em Cadeia da Polimerase Multiplex , Provírus/genética , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/virologia , Fatores de Tempo , Resultado do Tratamento , Carga Viral
20.
Proc Natl Acad Sci U S A ; 116(51): 25891-25899, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31776247

RESUMO

Understanding HIV-1 persistence despite antiretroviral therapy (ART) is of paramount importance. Both single-genome sequencing (SGS) and integration site analysis (ISA) provide useful information regarding the structure of persistent HIV DNA populations; however, until recently, there was no way to link integration sites to their cognate proviral sequences. Here, we used multiple-displacement amplification (MDA) of cellular DNA diluted to a proviral endpoint to obtain full-length proviral sequences and their corresponding sites of integration. We applied this method to lymph node and peripheral blood mononuclear cells from 5 ART-treated donors to determine whether groups of identical subgenomic sequences in the 2 compartments are the result of clonal expansion of infected cells or a viral genetic bottleneck. We found that identical proviral sequences can result from both cellular expansion and viral genetic bottlenecks occurring prior to ART initiation and following ART failure. We identified an expanded T cell clone carrying an intact provirus that matched a variant previously detected by viral outgrowth assays and expanded clones with wild-type and drug-resistant defective proviruses. We also found 2 clones from 1 donor that carried identical proviruses except for nonoverlapping deletions, from which we could infer the sequence of the intact parental virus. Thus, MDA-SGS can be used for "viral reconstruction" to better understand intrapatient HIV-1 evolution and to determine the clonality and structure of proviruses within expanded clones, including those with drug-resistant mutations. Importantly, we demonstrate that identical sequences observed by standard SGS are not always sufficient to establish proviral clonality.


Assuntos
HIV-1/genética , Integração Viral/genética , Replicação Viral/genética , Antirretrovirais/uso terapêutico , Sequência de Bases , Linhagem Celular , DNA Viral/genética , Farmacorresistência Viral , Infecções por HIV/virologia , Humanos , Leucócitos Mononucleares/virologia , Linfonodos/virologia , Mutação , Provírus/genética , Integração Viral/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...