Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cereb Cortex ; 33(13): 8194-8217, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-36958809

RESUMO

Considerable research has been devoted to understanding the fundamental organizing principles of the ventral visual pathway. A recent study revealed a series of 3-4 topographical maps arranged along the macaque inferotemporal (IT) cortex. The maps articulated a two-dimensional space based on the spikiness and animacy of visual objects, with "inanimate-spiky" and "inanimate-stubby" regions of the maps constituting two previously unidentified cortical networks. The goal of our study was to determine whether a similar functional organization might exist in human IT. To address this question, we presented the same object stimuli and images from "classic" object categories (bodies, faces, houses) to humans while recording fMRI activity at 7 Tesla. Contrasts designed to reveal the spikiness-animacy object space evoked extensive significant activation across human IT. However, unlike the macaque, we did not observe a clear sequence of complete maps, and selectivity for the spikiness-animacy space was deeply and mutually entangled with category-selectivity. Instead, we observed multiple new stimulus preferences in category-selective regions, including functional sub-structure related to object spikiness in scene-selective cortex. Taken together, these findings highlight spikiness as a promising organizing principle of human IT and provide new insights into the role of category-selective regions in visual object processing.


Assuntos
Reconhecimento Visual de Modelos , Córtex Visual , Animais , Humanos , Reconhecimento Visual de Modelos/fisiologia , Mapeamento Encefálico , Córtex Visual/diagnóstico por imagem , Córtex Visual/fisiologia , Percepção Visual , Imageamento por Ressonância Magnética , Vias Visuais/diagnóstico por imagem , Vias Visuais/fisiologia , Macaca , Estimulação Luminosa/métodos
2.
Eur J Neurosci ; 56(3): 4107-4120, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35703007

RESUMO

Neuroimaging studies using univariate and multivariate approaches have shown that the fusiform face area (FFA) and parahippocampal place area (PPA) respond selectively to images of faces and places. The aim of this study was to determine the extent to which this selectivity to faces or places is based on the shape or texture properties of the images. Faces and houses were filtered to manipulate their texture properties, while preserving the shape properties (spatial envelope) of the images. In Experiment 1, multivariate pattern analysis (MVPA) showed that patterns of fMRI response to faces and houses in FFA and PPA were predicted by the shape properties, but not by the texture properties of the image. In Experiment 2, a univariate analysis (fMR-adaptation) showed that responses in the FFA and PPA were sensitive to changes in both the shape and texture properties of the image. These findings can be explained by the spatial scale of the representation of images in the FFA and PPA. At a coarser scale (revealed by MVPA), the neural selectivity to faces and houses is sensitive to variation in the shape properties of the image. However, at a finer scale (revealed by fMR-adaptation), the neural selectivity is sensitive to the texture properties of the image. By combining these neuroimaging paradigms, our results provide insights into the spatial scale of the neural representation of faces and places in the ventral-temporal cortex.


Assuntos
Córtex Visual , Adaptação Fisiológica , Mapeamento Encefálico , Imageamento por Ressonância Magnética , Reconhecimento Visual de Modelos/fisiologia , Estimulação Luminosa , Lobo Temporal/diagnóstico por imagem , Lobo Temporal/fisiologia , Córtex Visual/fisiologia
3.
Hum Brain Mapp ; 40(16): 4716-4731, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31338936

RESUMO

The ventral visual pathway is directly involved in the perception and recognition of objects. However, the extent to which the neural representation of objects in this region reflects low-level or high-level properties remains unresolved. A problem in resolving this issue is that only a small proportion of the objects experienced during natural viewing can be shown during a typical experiment. This can lead to an uneven sampling of objects that biases our understanding of how they are represented. To address this issue, we developed a data-driven approach to stimulus selection that involved describing a large number objects in terms of their image properties. In the first experiment, clusters of objects were evenly selected from this multi-dimensional image space. Although the clusters did not have any consistent semantic features, each elicited a distinct pattern of neural response. In the second experiment, we asked whether high-level, category-selective patterns of response could be elicited by objects from other categories, but with similar image properties. Object clusters were selected based on the similarity of their image properties to objects from five different categories (bottle, chair, face, house, and shoe). The pattern of response to each metameric object cluster was similar to the pattern elicited by objects from the corresponding category. For example, the pattern for bottles was similar to the pattern for objects with similar image properties to bottles. In both experiments, the patterns of response were consistent across participants providing evidence for common organising principles. This study provides a more ecological approach to understanding the perceptual representations of objects and reveals the importance of image properties.


Assuntos
Vias Visuais/diagnóstico por imagem , Adulto , Algoritmos , Mapeamento Encefálico/métodos , Análise por Conglomerados , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Estimulação Luminosa , Córtex Visual/diagnóstico por imagem , Adulto Jovem
4.
Eur J Neurosci ; 49(12): 1587-1596, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30589482

RESUMO

Regions in the ventral visual pathway, such as the fusiform face area (FFA) and parahippocampal place area (PPA) are selective for images from specific object categories. Yet images from different object categories differ in their image properties. To investigate how these image properties are represented in the FFA and PPA, we compared neural responses to locally-SCRAMBLED images (in which mid-level, spatial properties are preserved) and globally-SCRAMBLED images (in which mid-level, spatial properties are not preserved). There was a greater response in the FFA and PPA to images from the preferred CATEGORY relative to their non-preferred category for the scrambled conditions. However, there was a greater selectivity for locally-scrambled compared to globally-scrambled images. Next, we compared the magnitude of fMR-adaptation to intact and scrambled images. fMR-adaptation was evident to locally-scrambled images from the preferred category. However, there was no adaptation to globally-scrambled images from the preferred category. These results show that the selectivity to faces and places in the FFA and PPA is dependent on mid-level properties of the image that are preserved by local-scrambling.


Assuntos
Reconhecimento Facial/fisiologia , Giro Para-Hipocampal/fisiologia , Percepção Espacial/fisiologia , Lobo Temporal/fisiologia , Adaptação Fisiológica , Adolescente , Adulto , Idoso , Mapeamento Encefálico , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Giro Para-Hipocampal/diagnóstico por imagem , Estimulação Luminosa/métodos , Reconhecimento Psicológico/fisiologia , Lobo Temporal/diagnóstico por imagem , Vias Visuais/diagnóstico por imagem , Vias Visuais/fisiologia , Adulto Jovem
5.
Sci Rep ; 7(1): 2444, 2017 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-28550282

RESUMO

High-level regions of the ventral visual pathway respond more to intact objects compared to scrambled objects. The aim of this study was to determine if this selectivity for objects emerges at an earlier stage of processing. Visual areas (V1-V3) were defined for each participant using retinotopic mapping. Participants then viewed intact and scrambled images from different object categories (bottle, chair, face, house, shoe) while neural responses were measured using fMRI. Our rationale for using scrambled images is that they contain the same low-level properties as the intact objects, but lack the higher-order combinations of features that are characteristic of natural images. Neural responses were higher for scrambled than intact images in all regions. However, the difference between intact and scrambled images was smaller in V3 compared to V1 and V2. Next, we measured the spatial patterns of response to intact and scrambled images from different object categories. We found higher within-category compared to between category correlations for both intact and scrambled images demonstrating distinct patterns of response. Spatial patterns of response were more distinct for intact compared to scrambled images in V3, but not in V1 or V2. These findings demonstrate the emergence of selectivity to natural images in V3.


Assuntos
Reconhecimento Visual de Modelos/fisiologia , Córtex Visual/fisiologia , Campos Visuais/fisiologia , Vias Visuais/fisiologia , Adulto , Mapeamento Encefálico , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Estimulação Luminosa , Córtex Visual/diagnóstico por imagem , Vias Visuais/diagnóstico por imagem , Adulto Jovem
6.
eNeuro ; 3(4)2016.
Artigo em Inglês | MEDLINE | ID: mdl-27517086

RESUMO

Brain-imaging studies have found distinct spatial and temporal patterns of response to different object categories across the brain. However, the extent to which these categorical patterns of response reflect higher-level semantic or lower-level visual properties of the stimulus remains unclear. To address this question, we measured patterns of EEG response to intact and scrambled images in the human brain. Our rationale for using scrambled images is that they have many of the visual properties found in intact images, but do not convey any semantic information. Images from different object categories (bottle, face, house) were briefly presented (400 ms) in an event-related design. A multivariate pattern analysis revealed categorical patterns of response to intact images emerged ∼80-100 ms after stimulus onset and were still evident when the stimulus was no longer present (∼800 ms). Next, we measured the patterns of response to scrambled images. Categorical patterns of response to scrambled images also emerged ∼80-100 ms after stimulus onset. However, in contrast to the intact images, distinct patterns of response to scrambled images were mostly evident while the stimulus was present (∼400 ms). Moreover, scrambled images were able to account only for all the variance in the intact images at early stages of processing. This direct manipulation of visual and semantic content provides new insights into the temporal dynamics of object perception and the extent to which different stages of processing are dependent on lower-level or higher-level properties of the image.


Assuntos
Encéfalo/fisiologia , Semântica , Percepção Visual/fisiologia , Eletroencefalografia , Feminino , Humanos , Masculino , Análise Multivariada , Estimulação Luminosa , Adulto Jovem
7.
Neuroimage ; 135: 107-14, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27132543

RESUMO

Neuroimaging studies have revealed distinct patterns of response to different object categories in the ventral visual pathway. These findings imply that object category is an important organizing principle in this region of visual cortex. However, object categories also differ systematically in their image properties. So, it is possible that these patterns of neural response could reflect differences in image properties rather than object category. To differentiate between these alternative explanations, we used images of objects that had been phase-scrambled at a local or global level. Both scrambling processes preserved many of the lower-level image properties, but rendered the images unrecognizable. We then measured the effect of image scrambling on the patterns of neural response within the ventral pathway. We found that intact and scrambled images evoked distinct category-selective patterns of activity in the ventral stream. Moreover, intact and scrambled images of the same object category produced highly similar patterns of response. These results suggest that the neural representation in the ventral visual pathway is tightly linked to the statistical properties of the image.


Assuntos
Sinais (Psicologia) , Potenciais Evocados Visuais/fisiologia , Percepção de Forma/fisiologia , Rede Nervosa/fisiologia , Reconhecimento Visual de Modelos/fisiologia , Córtex Visual/fisiologia , Vias Visuais/fisiologia , Mapeamento Encefálico/métodos , Feminino , Humanos , Masculino , Campos Visuais/fisiologia , Adulto Jovem
8.
Neuroimage ; 119: 229-34, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26123379

RESUMO

Bistable stimuli, such as the Necker Cube, demonstrate that experience can change in the absence of changes in the environment. Such phenomena can be used to assess stimulus-independent aspects of conscious experience. The current study used resting state functional magnetic resonance imaging (rs-fMRI) to index stimulus-independent changes in neural activity to understand the neural architecture that determines dominance durations during bistable perception (using binocular rivalry and Necker cube stimuli). Anterior regions of the Superior Parietal Lobule (SPL) exhibited robust connectivity with regions of primary sensorimotor cortex. The strength of this region's connectivity with the striatum predicted shorter dominance durations during binocular rivalry, whereas its connectivity to pre-motor cortex predicted longer dominance durations for the Necker Cube. Posterior regions of the SPL, on the other hand, were coupled to associative cortex in the temporal and frontal lobes. The posterior SPL's connectivity to the temporal lobe predicted longer dominance during binocular rivalry. In conjunction with prior work, these data suggest that the anterior SPL contributes to perceptual rivalry through the inhibition of incongruent bottom up information, whereas the posterior SPL influences rivalry by supporting the current interpretation of a bistable stimulus. Our data suggests that the functional connectivity of the SPL with regions of sensory, motor, and associative cortex allows it to regulate the interpretation of the environment that forms the focus of conscious attention at a specific moment in time.


Assuntos
Encéfalo/fisiologia , Percepção Visual/fisiologia , Mapeamento Encefálico , Humanos , Imageamento por Ressonância Magnética , Rede Nervosa/fisiologia , Estimulação Luminosa , Córtex Sensório-Motor/fisiologia , Visão Binocular/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA