Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Psychopharmacology (Berl) ; 237(7): 2139-2149, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32388618

RESUMO

BACKGROUND: HDAC6 is a class IIB histone deacetylase expressed at many levels of the nociceptive pathway. This study tested the ability of novel and selective HDAC6 inhibitors to alleviate sensory hypersensitivity behaviors in mouse models of peripheral nerve injury and peripheral inflammation. METHODS: We utilized the murine spared nerve injury (SNI) model for peripheral nerve injury and the Complete Freund's Adjuvant (CFA) model of peripheral inflammation. We applied the Von Frey assay to monitor mechanical allodynia. RESULTS: Using the SNI model, we demonstrate that daily administration of the brain-penetrant HDAC6 inhibitor, ACY-738, abolishes mechanical allodynia in male and in female mice. Importantly, there is no tolerance to the antiallodynic actions of these compounds as they produce a consistent increase in Von Frey thresholds for several weeks. We observed a similar antiallodynic effect when utilizing the HDAC6 inhibitor, ACY-257, which shows limited brain expression when administered systemically. We also demonstrate that ACY-738 and ACY-257 attenuate mechanical allodynia in the CFA model of peripheral inflammation. CONCLUSIONS: Overall, our findings suggest that inhibition of HDAC6 provides a promising therapeutic avenue for the alleviation of mechanical allodynia associated with peripheral nerve injury and peripheral inflammation.


Assuntos
Desacetilase 6 de Histona/antagonistas & inibidores , Desacetilase 6 de Histona/metabolismo , Inibidores de Histona Desacetilases/uso terapêutico , Hiperalgesia/tratamento farmacológico , Hiperalgesia/metabolismo , Medição da Dor/efeitos dos fármacos , Animais , Inibidores de Histona Desacetilases/farmacologia , Ácidos Hidroxâmicos/farmacologia , Ácidos Hidroxâmicos/uso terapêutico , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Medição da Dor/métodos , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico , Ratos , Ratos Sprague-Dawley
2.
Proc Natl Acad Sci U S A ; 115(9): E2085-E2094, 2018 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-29440403

RESUMO

Regulator of G protein signaling z1 (RGSz1), a member of the RGS family of proteins, is present in several networks expressing mu opioid receptors (MOPRs). By using genetic mouse models for global or brain region-targeted manipulations of RGSz1 expression, we demonstrated that the suppression of RGSz1 function increases the analgesic efficacy of MOPR agonists in male and female mice and delays the development of morphine tolerance while decreasing the sensitivity to rewarding and locomotor activating effects. Using biochemical assays and next-generation RNA sequencing, we identified a key role of RGSz1 in the periaqueductal gray (PAG) in morphine tolerance. Chronic morphine administration promotes RGSz1 activity in the PAG, which in turn modulates transcription mediated by the Wnt/ß-catenin signaling pathway to promote analgesic tolerance to morphine. Conversely, the suppression of RGSz1 function stabilizes Axin2-Gαz complexes near the membrane and promotes ß-catenin activation, thereby delaying the development of analgesic tolerance. These data show that the regulation of RGS complexes, particularly those involving RGSz1-Gαz, represents a promising target for optimizing the analgesic actions of opioids without increasing the risk of dependence or addiction.


Assuntos
Analgésicos Opioides/farmacologia , Proteínas RGS/antagonistas & inibidores , Via de Sinalização Wnt , Analgesia , Animais , Condicionamento Psicológico , Feminino , Proteínas de Ligação ao GTP/metabolismo , Inflamação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Morfina/farmacologia , Neurônios/metabolismo , Substância Cinzenta Periaquedutal/metabolismo , Proteínas RGS/metabolismo , Análise de Sequência de RNA , Proteínas Wnt/metabolismo , beta Catenina/metabolismo
3.
Neuropsychopharmacology ; 42(7): 1548-1556, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28074831

RESUMO

Regulator of G-protein signaling 9-2 (RGS9-2) is a striatal-enriched signal-transduction modulator known to have a critical role in the development of addiction-related behaviors following exposure to psychostimulants or opioids. RGS9-2 controls the function of several G-protein-coupled receptors, including dopamine receptor and mu opioid receptor (MOR). We previously showed that RGS9-2 complexes negatively control morphine analgesia, and promote the development of morphine tolerance. In contrast, RGS9-2 positively modulates the actions of other opioid analgesics, such as fentanyl and methadone. Here we investigate the role of RGS9-2 in regulating responses to oxycodone, an MOR agonist prescribed for the treatment of severe pain conditions that has addictive properties. Using mice lacking the Rgs9 gene (RGS9KO), we demonstrate that RGS9-2 positively regulates the rewarding effects of oxycodone in pain-free states, and in a model of neuropathic pain. Furthermore, although RGS9-2 does not affect the analgesic efficacy of oxycodone or the expression of physical withdrawal, it opposes the development of oxycodone tolerance, in both acute pain and chronic neuropathic pain models. Taken together, these data provide new information on the signal-transduction mechanisms that modulate the rewarding and analgesic actions of oxycodone.


Assuntos
Analgésicos Opioides/uso terapêutico , Dor Crônica/tratamento farmacológico , Dor Crônica/metabolismo , Oxicodona/uso terapêutico , Medição da Dor/métodos , Proteínas RGS/deficiência , Analgésicos Opioides/farmacologia , Animais , Relação Dose-Resposta a Droga , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oxicodona/farmacologia , Medição da Dor/efeitos dos fármacos , Resultado do Tratamento
5.
FASEB J ; 28(5): 2120-33, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24497580

RESUMO

Secretion of proteins and neurotransmitters from large dense core vesicles (LDCVs) is a highly regulated process. Adrenal LDCV formation involves the granin proteins chromogranin A (CgA) and chromogranin B (CgB); CgA- and CgB-derived peptides regulate catecholamine levels and blood pressure. We investigated function of the granin VGF (nonacronymic) in LDCV formation and the regulation of catecholamine levels and blood pressure. Expression of exogenous VGF in nonendocrine NIH 3T3 fibroblasts resulted in the formation of LDCV-like structures and depolarization-induced VGF secretion. Analysis of germline VGF-knockout mouse adrenal medulla revealed decreased LDCV size in noradrenergic chromaffin cells, increased adrenal norepinephrine and epinephrine content and circulating plasma epinephrine, and decreased adrenal CgB. These neurochemical changes in VGF-knockout mice were associated with hypertension. Germline knock-in of human VGF1-615 into the mouse Vgf locus rescued the hypertensive knockout phenotype, while knock-in of a truncated human VGF1-524 that lacks several C-terminal peptides, including TLQP-21, resulted in a small but significant increase in systolic blood pressure compared to hVGF1-615 mice. Finally, acute and chronic administration of the VGF-derived peptide TLQP-21 to rodents decreased blood pressure. Our studies establish a role for VGF in adrenal LDCV formation and the regulation of catecholamine levels and blood pressure.


Assuntos
Pressão Sanguínea , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Vesículas Secretórias/metabolismo , Medula Suprarrenal/metabolismo , Angiotensina Amida/sangue , Animais , Células Cromafins/metabolismo , Cromogranina A/metabolismo , Citoplasma/metabolismo , Epinefrina/sangue , Técnicas de Introdução de Genes , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células NIH 3T3 , Fatores de Crescimento Neural , Neurotransmissores/metabolismo , Fragmentos de Peptídeos/metabolismo , Fenótipo
6.
J Mol Neurosci ; 48(3): 654-9, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22581449

RESUMO

Members of the neurotrophin family, including nerve growth factor, brain-derived neurotrophic factor, neurotrophin-3, and neurotrophin-4/5, and other neurotrophic growth factors such as ciliary neurotrophic factor and artemin, regulate peripheral and central nervous system development and function. A subset of the neurotrophin-dependent pathways in the hypothalamus, brainstem, and spinal cord, and those that project via the sympathetic nervous system to peripheral metabolic tissues including brown and white adipose tissue, muscle and liver, regulate feeding, energy storage, and energy expenditure. We briefly review the role that neurotrophic growth factors play in energy balance, as regulators of neuronal survival and differentiation, neurogenesis, and circuit formation and function, and as inducers of critical gene products that control energy homeostasis.


Assuntos
Metabolismo Energético/fisiologia , Homeostase/fisiologia , Fatores de Crescimento Neural/fisiologia , Vias Neurais/fisiologia , Sistema Nervoso Simpático/fisiologia , Tecido Adiposo/inervação , Tecido Adiposo/fisiologia , Animais , Fibras Autônomas Pós-Ganglionares/fisiologia , Metabolismo Basal/fisiologia , Tronco Encefálico/fisiologia , Hormônio Liberador da Corticotropina/fisiologia , Ingestão de Alimentos/fisiologia , Metabolismo Energético/efeitos dos fármacos , Regulação da Expressão Gênica , Glucocorticoides/fisiologia , Humanos , Hipotálamo/fisiologia , Fatores de Crescimento Neural/farmacologia , Neuropeptídeos/fisiologia , Receptores de Fator de Crescimento Neural/fisiologia , Transdução de Sinais/fisiologia , Medula Espinal/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...