Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Theor Appl Genet ; 136(11): 218, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37815653

RESUMO

KEY MESSAGE: Clustering 24 environments in four contrasting nitrogen stress scenarios enabled the detection of genetic regions determining tolerance to nitrogen deficiency in European elite bread wheats. Increasing the nitrogen use efficiency of wheat varieties is an important goal for breeding. However, most genetic studies of wheat grown at different nitrogen levels in the field report significant interactions with the genotype. The chromosomal regions possibly involved in these interactions are largely unknown. The objective of this study was to quantify the response of elite bread wheat cultivars to different nitrogen field stress scenarios and identify genomic regions involved in this response. For this purpose, 212 elite bread wheat varieties were grown in a multi-environment trial at different nitrogen levels. Genomic regions associated with grain yield, protein concentration and grain protein deviation responses to nitrogen deficiency were identified. Environments were clustered according to adjusted means for grain yield, yield components and grain protein concentration. Four nitrogen availability scenarios were identified: optimal condition, moderate early deficiency, severe late deficiency, and severe continuous deficiency. A large range of tolerance to nitrogen deficiency was observed among varieties, which were ranked differently in different nitrogen deficiency scenarios. The well-known negative correlation between grain yield and grain protein concentration also existed between their respective tolerance indices. Interestingly, the tolerance indices for grain yield and grain protein deviation were either null or weakly positive meaning that breeding for the two traits should be less difficult than expected. Twenty-two QTL regions were identified for the tolerance indices. By selecting associated markers, these regions may be selected separately or combined to improve the tolerance to N deficiency within a breeding programme.


Assuntos
Proteínas de Grãos , Triticum , Triticum/genética , Pão , Melhoramento Vegetal , Grão Comestível/genética , Nitrogênio
2.
Food Energy Secur ; 12(1): e435, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37035025

RESUMO

The growing world population and global increases in the standard of living both result in an increasing demand for food, feed and other plant-derived products. In the coming years, plant-based research will be among the major drivers ensuring food security and the expansion of the bio-based economy. Crop productivity is determined by several factors, including the available physical and agricultural resources, crop management, and the resource use efficiency, quality and intrinsic yield potential of the chosen crop. This review focuses on intrinsic yield potential, since understanding its determinants and their biological basis will allow to maximize the plant's potential in food and energy production. Yield potential is determined by a variety of complex traits that integrate strictly regulated processes and their underlying gene regulatory networks. Due to this inherent complexity, numerous potential targets have been identified that could be exploited to increase crop yield. These encompass diverse metabolic and physical processes at the cellular, organ and canopy level. We present an overview of some of the distinct biological processes considered to be crucial for yield determination that could further be exploited to improve future crop productivity.

3.
Glob Chang Biol ; 29(11): 3130-3146, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36951185

RESUMO

France suffered, in 2016, the most extreme wheat yield decline in recent history, with some districts losing 55% yield. To attribute causes, we combined the largest coherent detailed wheat field experimental dataset with statistical and crop model techniques, climate information, and yield physiology. The 2016 yield was composed of up to 40% fewer grains that were up to 30% lighter than expected across eight research stations in France. The flowering stage was affected by prolonged cloud cover and heavy rainfall when 31% of the loss in grain yield was incurred from reduced solar radiation and 19% from floret damage. Grain filling was also affected as 26% of grain yield loss was caused by soil anoxia, 11% by fungal foliar diseases, and 10% by ear blight. Compounding climate effects caused the extreme yield decline. The likelihood of these compound factors recurring under future climate change is estimated to change with a higher frequency of extremely low wheat yields.


Assuntos
Grão Comestível , Triticum , Triticum/fisiologia , França , Solo
5.
J Exp Bot ; 72(4): 1085-1103, 2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33068400

RESUMO

Wheat phenology allows escape from seasonal abiotic stresses including frosts and high temperatures, the latter being forecast to increase with climate change. The use of marker-based crop models to identify ideotypes has been proposed to select genotypes adapted to specific weather and management conditions and anticipate climate change. In this study, a marker-based crop model for wheat phenology was calibrated and tested. Climate analysis of 30 years of historical weather data in 72 locations representing the main wheat production areas in France was performed. We carried out marker-based crop model simulations for 1019 wheat cultivars and three sowing dates, which allowed calculation of genotypic stress avoidance frequencies of frost and heat stress and identification of ideotypes. The phenology marker-based crop model allowed prediction of large genotypic variations for the beginning of stem elongation (GS30) and heading date (GS55). Prediction accuracy was assessed using untested genotypes and environments, and showed median genotype prediction errors of 8.5 and 4.2 days for GS30 and GS55, respectively. Climate analysis allowed the definition of a low risk period for each location based on the distribution of the last frost and first heat days. Clustering of locations showed three groups with contrasting levels of frost and heat risks. Marker-based crop model simulations showed the need to optimize the genotype depending on sowing date, particularly in high risk environments. An empirical validation of the approach showed that it holds good promises to improve frost and heat stress avoidance.


Assuntos
Estresse Fisiológico , Triticum , Produtos Agrícolas/genética , França , Triticum/genética
6.
Sci Rep ; 9(1): 20182, 2019 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-31882900

RESUMO

While concerns about human-induced effects on the Earth's climate have mainly concentrated on carbon dioxide (CO2) and methane (CH4), reducing anthropogenic nitrous oxide (N2O) flux, mainly of agricultural origin, also represents an opportunity for substantial mitigation. To develop a solution that induces neither the transfer of nitrogen pollution nor decreases agricultural production, we specifically investigated the last step of the denitrification pathway, the N2O reduction path, in soils. We first observed that this path is mainly driven by soil pH and is progressively inhibited when pH is lower than 6.8. During field experiments, we observed that liming acidic soils to neutrality made N2O reduction more efficient and decreased soil N2O emissions. As we estimated acidic fertilized soils to represent 37% [27-50%] of French soils, we calculated that liming could potentially decrease France's total N2O emissions by 15.7% [8.3-21.2%]. Nevertheless, due to the different possible other impacts of liming, we currently recommend that the deployment of this solution to mitigate N2O emission should be based on local studies that take into account agronomic, environmental and economic aspects.

7.
Front Plant Sci ; 10: 904, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31379897

RESUMO

In order to evaluate the impact of water deficit in field conditions, researchers or breeders must set up large experiment networks in very restrictive field environments. Experience shows that half of the field trials are not relevant because of climatic conditions that do not allow the stress scenario to be tested. The PhénoField® platform is the first field based infrastructure in the European Union to ensure protection against rainfall for a large number of plots, coupled with the non-invasive acquisition of crops' phenotype. In this paper, we will highlight the PhénoField® production capability using data from 2017-wheat trial. The innovative approach of the PhénoField® platform consists in the use of automatic irrigating rainout shelters coupled with high throughput field phenotyping to complete conventional phenotyping and micrometeorological densified measurements. Firstly, to test various abiotic stresses, automatic mobile rainout shelters allow fine management of fertilization or irrigation by driving daily the intensity and period of the application of the desired limiting factor on the evaluated crop. This management is based on micro-meteorological measurements coupled with a simulation of a carbon, water and nitrogen crop budget. Furthermore, as high-throughput plant-phenotyping under controlled conditions is well advanced, comparable evaluation in field conditions is enabled through phenotyping gantries equipped with various optical sensors. This approach, giving access to either similar or innovative variables compared manual measurements, is moreover distinguished by its capacity for dynamic analysis. Thus, the interactions between genotypes and the environment can be deciphered and better detailed since this gives access not only to the environmental data but also to plant responses to limiting hydric and nitrogen conditions. Further data analyses provide access to the curve parameters of various indicator kinetics, all the more integrative and relevant of plant behavior under stressful conditions. All these specificities of the PhénoField® platform open the way to the improvement of various categories of crop models, the fine characterization of variety behavior throughout the growth cycle and the evaluation of particular sensors better suited to a specific research question.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...