Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
medRxiv ; 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39148820

RESUMO

Clonal hematopoiesis of indeterminate potential (CHIP) is the presence of somatic mutations in myeloid and lymphoid malignancy genes in the blood cells of individuals without a hematologic malignancy. Inflammation is hypothesized to be a key mediator in the progression of CHIP to hematologic malignancy and patients with CHIP have a high prevalence of inflammatory diseases. This study aimed to identify the prevalence and characteristics of CHIP in patients with inflammatory bowel disease (IBD). We analyzed whole exome sequencing data from 587 Crohn's disease (CD), 441 ulcerative colitis (UC), and 293 non-IBD controls to assess CHIP prevalence and used logistic regression to study associations with clinical outcomes. Older UC patients (age>45) harbored increased myeloid-CHIP mutations compared to younger patients (age≤45) (p=0.01). Lymphoid-CHIP was more prevalent in older IBD patients (p=0.007). Young CD patients were found to have myeloid-CHIP with high-risk features. IBD patients with CHIP exhibited unique mutational profiles compared to controls. Steroid use was associated with increased CHIP (p=0.05), while anti-TNF therapy was associated with decreased myeloid-CHIP (p=0.03). Pathway enrichment analyses indicated overlap between CHIP genes, IBD phenotypes, and inflammatory pathways. Our findings underscore a connection between IBD and CHIP pathophysiology. Patients with IBD and CHIP had unique risk profiles especially among older UC patients and younger CD patients. These findings suggest distinct evolutionary pathways for CHIP in IBD and necessitate awareness among IBD providers and hematologists to identify patients potentially at risk for CHIP-related complications including malignancy, cardiovascular disease and acceleration of their inflammatory disease.

2.
bioRxiv ; 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38895305

RESUMO

Background: Treatment strategies for Crohn's disease (CD) suppress diverse inflammatory pathways but many patients remain refractory to treatment. Autologous hematopoietic stem cell transplantation (SCT) has emerged as a therapy for medically refractory CD. SCT was developed to rescue cancer patients from myelosuppressive chemotherapy but its use for CD and other immune diseases necessitates reimagining SCT as a cellular therapy that restores appropriately responsive immune cell populations from hematopoietic progenitors in the stem cell autograft (i.e. immune "reset"). Here we present a paradigm to understand SCT as a cellular therapy for immune diseases and reveal how SCT re-establishes cellular immunity utilizing high-dimensional cellular phenotyping and functional studies of the stem cell grafts. Methods: Immunophenotyping using CyTOF, single cell RNA sequencing (scRNA-seq) and T cell receptor (TCR) sequencing was performed on peripheral blood and intestinal tissue samples from refractory CD patients who underwent SCT. The stem cell graft from these patients was analyzed using flow cytometry and functionally interrogated using a murine model for engraftment. Results: Our study revealed a remodeling of intestinal macrophages capable of supporting mucosal healing that was independently validated using multimodal studies of immune reconstitution events including CyTOF and scRNA-seq. Functional interrogation of hematopoietic stem cells (HSCs) using a xenograft model demonstrated that HSCs shape the timing of immune reconstitution, the selected reconstitution of specific cell lineages and potentially the clinical efficacy of SCT. Conclusions: These studies indicate that SCT serves as a myeloid-directed cellular therapy re-establishing homeostatic intestinal macrophages that support intestinal healing and suggest refractory CD evolves from impairment of restorative functions in myeloid cells. Furthermore, we report heterogeneity among HSCs from CD patients which may drive SCT outcomes and suggests an unrecognized impact of CD pathophysiology on HSC in the marrow niche.

4.
Femina ; 16(1): 69-72, jan. 1988.
Artigo em Português | LILACS | ID: lil-63174
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA