Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
bioRxiv ; 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38405902

RESUMO

Osteogenic differentiation is essential for bone development and metabolism, but the underlying gene regulatory networks have not been well investigated. We differentiated mesenchymal stem cells, derived from 20 human induced pluripotent stem cell lines, into preosteoblasts and osteoblasts, and performed systematic RNA-seq analyses of 60 samples for differential gene expression. We noted a highly significant correlation in expression patterns and genomic proximity among transcription factor (TF) and long noncoding RNA (lncRNA) genes. We identified TF-TF regulatory networks, regulatory roles of lncRNAs on their neighboring coding genes for TFs and splicing factors, and differential splicing of TF, lncRNA, and splicing factor genes. TF-TF regulatory and gene co-expression network analyses suggested an inhibitory role of TF KLF16 in osteogenic differentiation. We demonstrate that in vitro overexpression of human KLF16 inhibits osteogenic differentiation and mineralization, and in vivo Klf16+/- mice exhibit increased bone mineral density, trabecular number, and cortical bone area. Thus, our model system highlights the regulatory complexity of osteogenic differentiation and identifies novel osteogenic genes.

2.
Mol Cytogenet ; 16(1): 32, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38012697

RESUMO

Lipoblastomas (LPBs) are rare benign neoplasms derived from embryonal adipose that occur predominantly in childhood. LPBs typically present with numeric or structural rearrangements of chromosome 8, the majority of which involve the pleomorphic adenoma gene 1 (PLAG1) proto-oncogene on chromosome 8q12. Here, we report on a LPB case on which showed evidence of chromothripsis. This is the second reported case of chromothripsis in LPB.

4.
Leuk Res Rep ; 20: 100381, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37560406

RESUMO

Introduction: Transient abnormal myelopoiesis (TAM) is a transient, clonal myeloproliferative disorder unique to Down Syndrome (DS) babies. It is characterized by increased peripheral blasts and presence of GATA1 mutation. The clinical spectrum ranges from jaundice and hepatosplenomegaly to multi-organ failure and death. Here we present a case of a premature baby with DS diagnosed to have TAM with extramedullary involvement at birth who had a fatal outcome. Case report: A 30.3-week-old female fetus with DS had leukocytosis (WBC: 187.82 K/uL) with neutrophilia (ANC 27.65 K/uL), macrocytic anemia (RBC: 2.41 m/uL, Hb 8.8 g/dL, MCV 108.3, MCH 36.5, MCHC 33.7) and thrombocytosis (platelet count 361 K/uL) at birth. Liver panels demonstrated normal bilirubin levels with elevated liver enzymes (AST = 239 U/L, ALT = 216 U/L). Results: Peripheral smear showed marked leukocytosis with increased blasts (70%), nucleated RBCs, giant platelets, and megakaryocytic elements. Flow cytometry demonstrated two populations of cells: 20% myeloblasts and 26% dim CD45 CD34- cells. GATA1 mutation was present. Based on these findings a diagnosis of TAM with extramedullary hematopoiesis was made. She received two cycles of cytarabine chemotherapy. Though her WBC levels reached a low of 18.93 K/uL, she developed multi-organ failure, eventually leading to death on day 45. Discussion: TAM is a transient condition resulting in disease resolution in around 80% of cases. Death is reported in 10% of cases. Risk factors associated with early death include prematurity, hyperleukocytosis, elevated bilirubin levels. Management of high-risk babies with chemotherapy is recommended to improve survival.

5.
Child Neurol Open ; 6: 2329048X19844920, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31106228

RESUMO

Cytogenomic microarray (CMA) methodologies, including array comparative genomic hybridization (aCGH) and single-nucleotide polymorphism-detecting arrays (SNP-array), are recommended as the first-tier test for the evaluation of imbalances associated with intellectual disability, autism, and multiple congenital anomalies. The authors report on a child with global developmental delay (GDD) and a de novo interstitial 7.0 Mb deletion of 9q21.33q22.31 detected by aCGH. The patient that the authors report here is noteworthy in that she presented with GDD and her interstitial deletion is not inclusive of the 9q22.32 locus that includes the PTCH1 gene, which is implicated in Gorlin syndrome, or basal cell nevus syndrome (BCNS), has not been previously reported among patients with a similar or smaller size of the deletion in this locus suggesting that the genomic contents in the identified deletion on 9q21.33q22.31 is critical for the phenotype.

6.
BMC Med Genomics ; 12(1): 51, 2019 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-30885185

RESUMO

BACKGROUND: The chromosome 3q29 microdeletion syndrome is characterized by a clinical phenotype that includes behavioral features consistent with autism and attention deficit hyperactivity disorder, mild to moderate developmental delay, language-based learning disabilities, and/or dysmorphic features. In addition, recent data suggest that adults with chromosome 3q29 microdeletions have a significantly increased risk for psychosis and neuropsychiatric phenotypes. CASE PRESENTATION: We report a 3-year-old male with global developmental delay, anemia, and mild dysmorphic facial features. Clinical chromosomal microarray (CMA) testing of the proband detected a heterozygous 1.21 Mb deletion at chromosome 3q29, consistent with a diagnosis of the 3q29 microdeletion syndrome. Interestingly, subsequent parental testing determined that the pathogenic deletion was inherited from his otherwise healthy mother who had a history of learning disabilities. The chromosome 3q29 microdeletion was not detected in the healthy older sibling of the proband by CMA testing, nor was it prenatally detected in a subsequent maternal pregnancy. CONCLUSION: Our report highlights the 3q29 microdeletion syndrome as an illustrative example of the importance of a molecular diagnosis for families that harbor pathogenic copy number aberrations with variable expressivity, in particular those that also impart an increased risk for adult onset neuropsychiatric phenotypes.


Assuntos
Deficiência Intelectual/genética , Linhagem , Pré-Escolar , Deleção Cromossômica , Cromossomos Humanos Par 3/genética , Variações do Número de Cópias de DNA , Deficiências do Desenvolvimento/complicações , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/patologia , Deficiências do Desenvolvimento/fisiopatologia , Feminino , Humanos , Deficiência Intelectual/complicações , Deficiência Intelectual/patologia , Deficiência Intelectual/fisiopatologia , Masculino , Risco
7.
J Mol Cell Cardiol ; 119: 147-154, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29752948

RESUMO

Dilated cardiomyopathy (DCM) can be caused by mutations in the cardiac protein phospholamban (PLN). We used CRISPR/Cas9 to insert the R9C PLN mutation at its endogenous locus into a human induced pluripotent stem cell (hiPSC) line from an individual with no cardiovascular disease. R9C PLN hiPSC-CMs display a blunted ß-agonist response and defective calcium handling. In 3D human engineered cardiac tissues (hECTs), a blunted lusitropic response to ß-adrenergic stimulation was observed with R9C PLN. hiPSC-CMs harboring the R9C PLN mutation showed activation of a hypertrophic phenotype, as evidenced by expression of hypertrophic markers and increased cell size and capacitance of cardiomyocytes. RNA-seq suggests that R9C PLN results in an altered metabolic state and profibrotic signaling, which was confirmed by gene expression analysis and picrosirius staining of R9C PLN hECTs. The expression of several miRNAs involved in fibrosis, hypertrophy, and cardiac metabolism were also perturbed in R9C PLN hiPSC-CMs. This study contributes to better understanding of the pathogenic mechanisms of the hereditary R9C PLN mutation in the context of human cardiomyocytes.


Assuntos
Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Transcriptoma , Agonistas Adrenérgicos beta/metabolismo , Análise de Variância , Sequência de Bases , Sistemas CRISPR-Cas/genética , Cálcio/metabolismo , Cardiomiopatia Dilatada/patologia , Crescimento Celular , Linhagem Celular , Tamanho Celular , Fibrose , Edição de Genes , Humanos , MicroRNAs/metabolismo , Mutação , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Engenharia Tecidual , Transfecção
8.
Epilepsy Behav ; 80: 312-320, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29402632

RESUMO

OBJECTIVE: Phelan-McDermid Syndrome (PMS) is a rare genetic condition associated with loss of function mutations, including deletions, in the chromosome 22q13 region. This PMS phenotype includes intellectual disability, often minimal to absent verbal skills, and other neurologic features including autism spectrum disorder and seizures. Reports indicate seizures and abnormal electroencephalograms (EEGs) in this population, but previous studies do not describe EEG findings during sleep or prognostic value of abnormal EEG over any time period. METHODS: During a natural history study, 16 consecutively enrolled participants (mean age 10years) with PMS underwent both routine (approximately 25min) and overnight (average 9.65h) video-EEG, in addition to genetic testing, neurodevelopmental assessment, neurological examination, and epilepsy phenotyping. Over 240h of EEG, data was recorded. Comparison of findings from the routine EEG was made with prolonged EEG acquired during awake and sleep the same night. In a subset of nine participants, the overnight EEG was repeated one or more years later to observe the natural evolution and prognostic value of any abnormalities noted at baseline. RESULTS: A history of epilepsy, with multiple seizure types, was confirmed in seven of the 16 participants, giving a prevalence of 43.8% in this cohort. All but one EEG was abnormal (15 of 16), and 75% (12 of 16) showed epileptiform activity. Of these, only 25% of participants (3 of 12) showed definitive epileptiform discharges during the routine study. Overnight EEGs (sleep included) did not show any clinical events consistent with seizures or electrophic seizures, however, overnight EEG showed either more frequent and/or more definitive epileptiform activity in 68.75% (11 of 16) participants. All seven of the 16 participants who had previously been diagnosed with epilepsy showed epileptiform abnormalities. In addition to a wide range of epileptiform activity observed, generalized slowing with poor background organization was frequently noted. Follow-up EEG confirmed persistence of abnormal discharges, but none of the abnormal EEGs showed evolution to electrographic seizures. Clinically, there was no emergence of epilepsy or significant developmental regression noted in the time frame observed. CONCLUSIONS: This is the first and most abundant prolonged awake and sleep video-EEG data recorded in a PMS cohort to date. The importance of overnight prolonged EEGs is highlighted by findings from this study, as they can be used to document the varied topographies of EEG abnormalities in conditions such as PMS, which are often missed during routine EEG studies. While the long-term significance of the EEG abnormalities found (beyond 1year) remains uncertain despite their persistence over time, these findings do underscore the current clinical recommendation that overnight prolonged EEG studies (with sleep) should be conducted in individuals with PMS.


Assuntos
Eletroencefalografia/métodos , Epilepsia/diagnóstico , Epilepsia/fisiopatologia , Convulsões/diagnóstico , Sono/fisiologia , Adolescente , Adulto , Idoso , Deleção Cromossômica , Transtornos Cromossômicos , Cromossomos Humanos Par 22 , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Fenótipo , Estudos Prospectivos , Gravação em Vídeo , Vigília
9.
NPJ Genom Med ; 3: 3, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29367880

RESUMO

Bardet-Biedl syndrome (BBS) is a recessive disorder characterized by heterogeneous clinical manifestations, including truncal obesity, rod-cone dystrophy, renal anomalies, postaxial polydactyly, and variable developmental delays. At least 20 genes have been implicated in BBS, and all are involved in primary cilia function. We report a 1-year-old male child from Guyana with obesity, postaxial polydactyly on his right foot, hypotonia, ophthalmologic abnormalities, and developmental delay, which together indicated a clinical diagnosis of BBS. Clinical chromosomal microarray (CMA) testing and high-throughput BBS gene panel sequencing detected a homozygous 7p14.3 deletion of exons 1-4 of BBS9 that was encompassed by a 17.5 Mb region of homozygosity at chromosome 7p14.2-p21.1. The precise breakpoints of the deletion were delineated to a 72.8 kb region in the proband and carrier parents by third-generation long-read single molecule real-time (SMRT) sequencing (Pacific Biosciences), which suggested non-homologous end joining as a likely mechanism of formation. Long-read SMRT sequencing of the deletion breakpoints also determined that the aberration included the neighboring RP9 gene implicated in retinitis pigmentosa; however, the clinical significance of this was considered uncertain given the paucity of reported cases with unambiguous RP9 mutations. Taken together, our study characterized a BBS9 deletion, and the identification of this shared haplotype in the parents suggests that this pathogenic aberration may be a BBS founder mutation in the Guyanese population. Importantly, this informative case also highlights the utility of long-read SMRT sequencing to map nucleotide breakpoints of clinically relevant structural variants.

10.
J Mol Diagn ; 19(3): 397-403, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28315673

RESUMO

Chromosomal microarray (CMA) testing to detect copy number aberrations among individuals with multiple congenital anomalies and/or developmental delay is typically performed on peripheral blood DNA. However, the use of saliva DNA may be preferred for some patients, which prompted our validation study using six saliva DNA samples with a range of bacterial content (approximately 3% to 21%) and 20 paired blood and saliva specimens on the Agilent Technologies, Illumina, and Affymetrix CMA platforms. Ten of the 20 paired specimens were previously determined to carry clinically significant copy number aberrations by clinical CMA testing on blood DNA (100 kb to 2.56 Mb; five deletions, eight duplications). Notably, the quality of saliva DNA (DNA Genotek) was equivalent to blood DNA regardless of bacterial content, as was CMA quality and single-nucleotide polymorphism genotyping quality with all CMA platforms. The number of copy number variants and absence of heterozygosity regions detected by CMA were comparable between paired blood and saliva DNA and, more important, all 13 clinically significant copy number aberrations were detected in saliva DNA by all CMA platforms. These data confirm that the quality of saliva DNA is comparable to blood DNA regardless of bacterial content, including important CMA and single-nucleotide polymorphism quality metrics, and that saliva DNA is a reliable alternative for the detection of clinically significant copy number aberrations by clinical CMA testing.


Assuntos
Aberrações Cromossômicas , Variações do Número de Cópias de DNA/genética , Saliva/química , Testes Genéticos , Genótipo , Humanos , Cariotipagem , Análise de Sequência com Séries de Oligonucleotídeos , Polimorfismo de Nucleotídeo Único/genética
12.
Stem Cell Reports ; 7(3): 355-369, 2016 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-27569062

RESUMO

Germline mutations in BRAF cause cardio-facio-cutaneous syndrome (CFCS), whereby 40% of patients develop hypertrophic cardiomyopathy (HCM). As the role of the RAS/MAPK pathway in HCM pathogenesis is unclear, we generated a human induced pluripotent stem cell (hiPSC) model for CFCS from three patients with activating BRAF mutations. By cell sorting for SIRPα and CD90, we generated a method to examine hiPSC-derived cell type-specific phenotypes and cellular interactions underpinning HCM. BRAF-mutant SIRPα(+)/CD90(-) cardiomyocytes displayed cellular hypertrophy, pro-hypertrophic gene expression, and intrinsic calcium-handling defects. BRAF-mutant SIRPα(-)/CD90(+) cells, which were fibroblast-like, exhibited a pro-fibrotic phenotype and partially modulated cardiomyocyte hypertrophy through transforming growth factor ß (TGFß) paracrine signaling. Inhibition of TGFß or RAS/MAPK signaling rescued the hypertrophic phenotype. Thus, cell autonomous and non-autonomous defects underlie HCM due to BRAF mutations. TGFß inhibition may be a useful therapeutic option for patients with HCM due to RASopathies or other etiologies.


Assuntos
Diferenciação Celular , Células-Tronco Pluripotentes Induzidas/citologia , Mutação , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Proteínas Proto-Oncogênicas B-raf/genética , Biomarcadores , Cálcio/metabolismo , Cardiomiopatia Hipertrófica/genética , Cardiomiopatia Hipertrófica/metabolismo , Cardiomiopatia Hipertrófica/patologia , Separação Celular , Reprogramação Celular , Humanos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Miócitos Cardíacos/patologia , Comunicação Parácrina , Fenótipo , Proteínas Proto-Oncogênicas B-raf/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta1/metabolismo , Proteínas ras/metabolismo
13.
Cell Rep ; 13(3): 504-515, 2015 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-26456833

RESUMO

Somatic PTPN11 mutations cause juvenile myelomonocytic leukemia (JMML). Germline PTPN11 defects cause Noonan syndrome (NS), and specific inherited mutations cause NS/JMML. Here, we report that hematopoietic cells differentiated from human induced pluripotent stem cells (hiPSCs) harboring NS/JMML-causing PTPN11 mutations recapitulated JMML features. hiPSC-derived NS/JMML myeloid cells exhibited increased signaling through STAT5 and upregulation of miR-223 and miR-15a. Similarly, miR-223 and miR-15a were upregulated in 11/19 JMML bone marrow mononuclear cells harboring PTPN11 mutations, but not those without PTPN11 defects. Reducing miR-223's function in NS/JMML hiPSCs normalized myelogenesis. MicroRNA target gene expression levels were reduced in hiPSC-derived myeloid cells as well as in JMML cells with PTPN11 mutations. Thus, studying an inherited human cancer syndrome with hiPSCs illuminated early oncogenesis prior to the accumulation of secondary genomic alterations, enabling us to discover microRNA dysregulation, establishing a genotype-phenotype association for JMML and providing therapeutic targets.


Assuntos
Células-Tronco Pluripotentes Induzidas/citologia , Leucemia Mielomonocítica Juvenil/metabolismo , Células Mieloides/citologia , Proteína Tirosina Fosfatase não Receptora Tipo 11/genética , Lectina 3 Semelhante a Ig de Ligação ao Ácido Siálico/metabolismo , Células Cultivadas , Células HEK293 , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Leucemia Mielomonocítica Juvenil/genética , Leucemia Mielomonocítica Juvenil/patologia , MicroRNAs/genética , Mutação , Células Mieloides/metabolismo , Lectina 3 Semelhante a Ig de Ligação ao Ácido Siálico/genética , Regulação para Cima
14.
Nat Commun ; 6: 6955, 2015 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-25923014

RESUMO

A number of genetic mutations is associated with cardiomyopathies. A mutation in the coding region of the phospholamban (PLN) gene (R14del) is identified in families with hereditary heart failure. Heterozygous patients exhibit left ventricular dilation and ventricular arrhythmias. Here we generate induced pluripotent stem cells (iPSCs) from a patient harbouring the PLN R14del mutation and differentiate them into cardiomyocytes (iPSC-CMs). We find that the PLN R14del mutation induces Ca(2+) handling abnormalities, electrical instability, abnormal cytoplasmic distribution of PLN protein and increases expression of molecular markers of cardiac hypertrophy in iPSC-CMs. Gene correction using transcription activator-like effector nucleases (TALENs) ameliorates the R14del-associated disease phenotypes in iPSC-CMs. In addition, we show that knocking down the endogenous PLN and simultaneously expressing a codon-optimized PLN gene reverses the disease phenotype in vitro. Our findings offer novel strategies for targeting the pathogenic mutations associated with cardiomyopathies.


Assuntos
Proteínas de Ligação ao Cálcio/genética , Cardiomiopatias/genética , Miócitos Cardíacos/metabolismo , Reparo Gênico Alvo-Dirigido , Adenoviridae , Adulto , Cardiomiopatias/metabolismo , Cardiomiopatias/terapia , Desoxirribonucleases , Feminino , Técnicas de Transferência de Genes , Humanos , Células-Tronco Pluripotentes Induzidas , Fenótipo , Deleção de Sequência
15.
Hum Mutat ; 36(6): 587-92, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25754315

RESUMO

Novel, single-nucleotide mutations were identified in the mitochondrial methionyl amino-acyl tRNA synthetase gene (MARS2) via whole exome sequencing in two affected siblings with developmental delay, poor growth, and sensorineural hearing loss.We show that compound heterozygous mutations c.550C>T:p.Gln 184* and c.424C>T:p.Arg142Trp in MARS2 lead to decreased MARS2 protein levels in patient lymphoblasts. Analysis of respiratory complex enzyme activities in patient fibroblasts revealed decreased complex I and IV activities. Immunoblotting of patient fibroblast and lymphoblast samples revealed reduced protein levels of NDUFB8 and COXII, representing complex I and IV, respectively. Additionally, overexpression of wild-type MARS2 in patient fibroblasts increased NDUFB8 and COXII protein levels. These findings suggest that recessive single-nucleotide mutations in MARS2 are causative for a new mitochondrial translation deficiency disorder with a primary phenotype including developmental delay and hypotonia. Identification of additional patients with single-nucleotide mutations in MARS2 is necessary to determine if pectus carinatum is also a consistent feature of this syndrome.


Assuntos
Deficiências do Desenvolvimento/genética , Estudos de Associação Genética , Transtornos do Crescimento/genética , Perda Auditiva Neurossensorial/genética , Heterozigoto , Metionina tRNA Ligase/genética , Polimorfismo de Nucleotídeo Único , Sequência de Aminoácidos , Substituição de Aminoácidos , Encéfalo/patologia , Pré-Escolar , Deficiências do Desenvolvimento/diagnóstico , Genes Mitocondriais , Transtornos do Crescimento/diagnóstico , Perda Auditiva Neurossensorial/diagnóstico , Humanos , Imageamento por Ressonância Magnética , Masculino , Metionina tRNA Ligase/química , Linhagem , Fenótipo
16.
PLoS One ; 9(7): e101316, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25010565

RESUMO

The use of human stem cell-derived cardiomyocytes to study atrial biology and disease has been restricted by the lack of a reliable method for stem cell-derived atrial cell labeling and purification. The goal of this study was to generate an atrial-specific reporter construct to identify and purify human stem cell-derived atrial-like cardiomyocytes. We have created a bacterial artificial chromosome (BAC) reporter construct in which fluorescence is driven by expression of the atrial-specific gene sarcolipin (SLN). When purified using flow cytometry, cells with high fluorescence specifically express atrial genes and display functional calcium handling and electrophysiological properties consistent with atrial cardiomyocytes. Our data indicate that SLN can be used as a marker to successfully monitor and isolate hiPSC-derived atrial-like cardiomyocytes. These purified cells may find many applications, including in the study of atrial-specific pathologies and chamber-specific lineage development.


Assuntos
Citometria de Fluxo/métodos , Átrios do Coração/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Proteínas Musculares/genética , Miócitos Cardíacos/citologia , Proteolipídeos/genética , Cálcio/metabolismo , Diferenciação Celular , Cromossomos Artificiais Bacterianos/genética , Fenômenos Eletrofisiológicos , Expressão Gênica , Genes Reporter/genética , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo
17.
Eur J Med Genet ; 56(11): 619-23, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24056159

RESUMO

Steroidogenic factor 1 (SF1) is a nuclear receptor encoded by the NR5A1 gene. SF1 affects both sexual and adrenal development through the regulation of target gene expression. Genotypic male and female SF1 knockout mice have adrenal and gonadal agenesis with persistent Müllerian structures and early lethality. There have been several reports of NR5A1 mutations in individuals with 46,XY complete gonadal dysgenesis (CGD) or other disorders of sex development (DSD) with or without an adrenal phenotype. To date microdeletions involving NR5A1 have been reported in only two patients with DSDs. We report a novel microdeletion encompassing NR5A1 in a patient with 46,XY DSD and developmental delay. The phenotypically female patient initially presented with mild developmental delay and dysmorphisms. Chromosome analysis revealed a 46,XY karyotype. A 1.54 Mb microdeletion of chromosome 9q33.3 including NR5A1 was detected by array CGH and confirmed by FISH. Normal maternal FISH results indicated that this was most likely a de novo event. Since most NR5A1 mutations have been ascertained through gonadal or adrenal abnormalities, the additional findings of developmental delay and minor facial dysmorphisms are possibly related to haploinsufficiency of other genes within the 1.54 Mb deleted region. This report further confirms the role of NR5A1 deletions in 46,XY DSD and reinforces the utility of aCGH in the work up of DSDs of unclear etiology.


Assuntos
Anormalidades Múltiplas/genética , Cromossomos Humanos Par 9/genética , Deficiências do Desenvolvimento/genética , Transtorno 46,XY do Desenvolvimento Sexual/genética , Deleção de Genes , Fator Esteroidogênico 1/genética , Anormalidades Múltiplas/diagnóstico , Criança , Deficiências do Desenvolvimento/diagnóstico , Transtorno 46,XY do Desenvolvimento Sexual/diagnóstico , Feminino , Humanos , Cariótipo , Síndrome
18.
Am J Med Genet A ; 158A(5): 1170-7, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22488896

RESUMO

Autism spectrum disorders (ASDs) are phenotypically complex developmental neuropsychiatric disorders affecting approximately 0.6% of the population. About 30-70% of affected children are also considered to have intellectual disability (ID). The underlying genetic causes of ASDs are diverse with a defined etiology in 16-20%. Array comparative genomic hybridization (aCGH) has proven useful in identifying sub-microscopic chromosome aberrations in a subset of patients, some of which have been shown to be recurrent. One such aberration is the 1.4 Mb microdeletion at chromosome 17q12, which has been reported to be associated with renal disease, growth restriction, diabetes, cognitive impairment, seizures, and in some cases an ASD. Patients with the reciprocal chromosome 17q12 microduplication typically have also been identified with ID and in some cases seizures and behavioral abnormalities. Here we report a patient with a de novo, 1.4 Mb microduplication diagnosed with significant ID involving complex deficits and autism. To our knowledge, this is the first report of a patient with the 17q12 microduplication and a complex ASD phenotype.


Assuntos
Transtornos Globais do Desenvolvimento Infantil/genética , Deleção Cromossômica , Duplicação Cromossômica , Cromossomos Humanos Par 17 , Pré-Escolar , Hibridização Genômica Comparativa , Humanos , Deficiência Intelectual/genética , Masculino , Pais
19.
Nature ; 465(7299): 808-12, 2010 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-20535210

RESUMO

The generation of reprogrammed induced pluripotent stem cells (iPSCs) from patients with defined genetic disorders holds the promise of increased understanding of the aetiologies of complex diseases and may also facilitate the development of novel therapeutic interventions. We have generated iPSCs from patients with LEOPARD syndrome (an acronym formed from its main features; that is, lentigines, electrocardiographic abnormalities, ocular hypertelorism, pulmonary valve stenosis, abnormal genitalia, retardation of growth and deafness), an autosomal-dominant developmental disorder belonging to a relatively prevalent class of inherited RAS-mitogen-activated protein kinase signalling diseases, which also includes Noonan syndrome, with pleomorphic effects on several tissues and organ systems. The patient-derived cells have a mutation in the PTPN11 gene, which encodes the SHP2 phosphatase. The iPSCs have been extensively characterized and produce multiple differentiated cell lineages. A major disease phenotype in patients with LEOPARD syndrome is hypertrophic cardiomyopathy. We show that in vitro-derived cardiomyocytes from LEOPARD syndrome iPSCs are larger, have a higher degree of sarcomeric organization and preferential localization of NFATC4 in the nucleus when compared with cardiomyocytes derived from human embryonic stem cells or wild-type iPSCs derived from a healthy brother of one of the LEOPARD syndrome patients. These features correlate with a potential hypertrophic state. We also provide molecular insights into signalling pathways that may promote the disease phenotype.


Assuntos
Células-Tronco Pluripotentes Induzidas/patologia , Síndrome LEOPARD/patologia , Modelos Biológicos , Medicina de Precisão , Adulto , Diferenciação Celular , Linhagem Celular , Linhagem da Célula , Células Cultivadas , Células-Tronco Embrionárias/metabolismo , Ativação Enzimática , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Perfilação da Expressão Gênica , Proteínas de Homeodomínio/genética , Humanos , Células-Tronco Pluripotentes Induzidas/enzimologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Síndrome LEOPARD/tratamento farmacológico , Síndrome LEOPARD/metabolismo , Masculino , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Fatores de Transcrição NFATC/genética , Fatores de Transcrição NFATC/metabolismo , Proteína Homeobox Nanog , Fator 3 de Transcrição de Octâmero/genética , Fosfoproteínas/análise , Reação em Cadeia da Polimerase , Proteína Tirosina Fosfatase não Receptora Tipo 11/genética , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Fatores de Transcrição SOXB1/genética
20.
Hum Mol Genet ; 19(17): 3383-93, 2010 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-20570968

RESUMO

Turner syndrome (TS) results from whole or partial monosomy X and is mediated by haploinsufficiency of genes that normally escape X-inactivation. Although a 45,X karyotype is observed in half of all TS cases, the most frequent variant TS karyotype includes the isodicentric X chromosome alone [46,X,idic(X)(p11)] or as a mosaic [46,X,idic(X)(p11)/45,X]. Given the mechanism of idic(X)(p11) rearrangement is poorly understood and breakpoint sequence information is unknown, this study sought to investigate the molecular mechanism of idic(X)(p11) formation by determining their precise breakpoint intervals. Karyotype analysis and fluorescence in situ hybridization mapping of eight idic(X)(p11) cell lines and three unbalanced Xp11.2 translocation lines identified the majority of breakpoints within a 5 Mb region, from approximately 53 to 58 Mb, in Xp11.1-p11.22, clustering into four regions. To further refine the breakpoints, a high-resolution oligonucleotide microarray (average of approximately 350 bp) was designed and array-based comparative genomic hybridization (aCGH) was performed on all 11 idic(X)(p11) and Xp11.2 translocation lines. aCGH analyses identified all breakpoint regions, including an idic(X)(p11) line with two potential breakpoints, one breakpoint shared between two idic(X)(p11) lines and two Xp translocations that shared breakpoints with idic(X)(p11) lines. Four of the breakpoint regions included large inverted repeats composed of repetitive gene clusters and segmental duplications, which corresponded to regions of copy-number variation. These data indicate that the rearrangement sites on Xp11.2 that lead to isodicentric chromosome formation and translocations are probably not random and suggest that the complex repetitive architecture of this region predisposes it to rearrangements, some of which are recurrent.


Assuntos
Quebra Cromossômica , Cromossomos Humanos X/genética , Sequências Repetidas Invertidas , Aberrações dos Cromossomos Sexuais , Síndrome de Turner/genética , Linhagem Celular Tumoral , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...