Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Educ ; 100(9): 3291-3301, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37720520

RESUMO

A student-led mathematics bootcamp has been designed and implemented to help foster community building, improve confidence in mathematical skills, and provide mathematical resources for incoming physical chemistry doctoral students. The bootcamp is held immediately before the start of the first semester of graduate school and uses an active learning approach to review and practice undergraduate-level mathematics problems over 5 days in small student groups. This work includes the development and presentation of a new, publicly available mathematics curriculum for the bootcamp on select mathematics topics, including calculus, linear algebra, functions, differential equations, statistics, and coding in Python, aiming at improving students' confidence and learning experiences in graduate quantum mechanics and statistical physics courses. Surveys before and after the bootcamp showed an increase in students' confidence in problem-solving in key mathematical areas and social aspects of peer-led group learning. Qualitative and quantitative analyses demonstrate that the bootcamp reduced prior inequities in students' confidence metrics based on gender and mathematical background.

2.
ACS Appl Mater Interfaces ; 14(9): 11910-11918, 2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35192763

RESUMO

Low-temperature electrolytes (LTEs) have been considered as one of the most challenging aspects for the wide adoption of lithium-ion batteries (LIBs) since the SOA electrolytes cannot sufficiently support the redox reactions at LT resulting in dramatic performance degradation. Although many attempts have been taken by employing various noncarbonate solvent electrolytes, there was a lack of fundamental understanding of the limiting factors for low-temperature operations (e.g., -20 to -40 °C). In this paper, the crucial role of the solid-electrolyte-interface (SEI) in LIB performance at low temperature using a butyronitrile (BN)-based electrolyte was demonstrated. These results suggested that an additive formed SEI with low resistance and low charge transfer dictates the LT performance in terms of capacity and cycle life, presenting a useful guideline in designing new electrolytes to address the LT issue.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA