Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 139
Filtrar
1.
J Am Chem Soc ; 146(12): 7985-7997, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38051138

RESUMO

Boron substitution represents a promising approach to stabilize carbon clathrate structures, but no thermodynamically stable substitution schemes have been identified for frameworks other than the type-VII (sodalite) structure type. To investigate the possibility for additional tetrahedral carbon-based clathrate networks, more than 5000 unique boron decoration schemes were investigated computationally for type-I and type-II carbon clathrates with a range of guest elements including Li, Na, K, Rb, Cs, Mg, Ca, Sr, and Ba. Density functional theory calculations were performed at 10 and 50 GPa, and the stability and impact of boron substitution were evaluated. The results indicate that the boron-substituted carbon clathrates are stabilized under high-pressure conditions. Full cage occupancies of intermediate-sized guest atoms (e.g., Na, Ca, and Sr) are the most favorable energetically. Clathrate stability is maximized when the boron atoms are substituted within the hexagonal rings of the large [51262]/[51264] cages. Several structures with favorable formation enthalpies <-200 meV/atom were predicted, and type-I Ca8B16C30 is on the convex hull at 50 GPa. This structure represents the first thermodynamically stable type-I clathrate identified and suggests that boron-substituted carbon clathrates may represent a large family of diamond-like framework materials with a range of structure types and guest/framework substitutions.

2.
Proc Natl Acad Sci U S A ; 119(8)2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35165195

RESUMO

Mg2GeO4 is important as an analog for the ultrahigh-pressure behavior of Mg2SiO4, a major component of planetary interiors. In this study, we have investigated magnesium germanate to 275 GPa and over 2,000 K using a laser-heated diamond anvil cell combined with in situ synchrotron X-ray diffraction and density functional theory (DFT) computations. The experimental results are consistent with the formation of a phase with disordered Mg and Ge, in which germanium adopts eightfold coordination with oxygen: the cubic, Th3P4-type structure. DFT computations suggest partial Mg-Ge order, resulting in a tetragonal [Formula: see text] structure indistinguishable from [Formula: see text] Th3P4 in our experiments. If applicable to silicates, the formation of this highly coordinated and intrinsically disordered phase may have important implications for the interior mineralogy of large, rocky extrasolar planets.

3.
Science ; 375(6577): 202-205, 2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35025665

RESUMO

The discovery of more than 4500 extrasolar planets has created a need for modeling their interior structure and dynamics. Given the prominence of iron in planetary interiors, we require accurate and precise physical properties at extreme pressure and temperature. A first-order property of iron is its melting point, which is still debated for the conditions of Earth's interior. We used high-energy lasers at the National Ignition Facility and in situ x-ray diffraction to determine the melting point of iron up to 1000 gigapascals, three times the pressure of Earth's inner core. We used this melting curve to determine the length of dynamo action during core solidification to the hexagonal close-packed (hcp) structure. We find that terrestrial exoplanets with four to six times Earth's mass have the longest dynamos, which provide important shielding against cosmic radiation.

4.
Proc Natl Acad Sci U S A ; 119(1)2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-34969863

RESUMO

Light elements in Earth's core play a key role in driving convection and influencing geodynamics, both of which are crucial to the geodynamo. However, the thermal transport properties of iron alloys at high-pressure and -temperature conditions remain uncertain. Here we investigate the transport properties of solid hexagonal close-packed and liquid Fe-Si alloys with 4.3 and 9.0 wt % Si at high pressure and temperature using laser-heated diamond anvil cell experiments and first-principles molecular dynamics and dynamical mean field theory calculations. In contrast to the case of Fe, Si impurity scattering gradually dominates the total scattering in Fe-Si alloys with increasing Si concentration, leading to temperature independence of the resistivity and less electron-electron contribution to the conductivity in Fe-9Si. Our results show a thermal conductivity of ∼100 to 110 W⋅m-1⋅K-1 for liquid Fe-9Si near the topmost outer core. If Earth's core consists of a large amount of silicon (e.g., > 4.3 wt %) with such a high thermal conductivity, a subadiabatic heat flow across the core-mantle boundary is likely, leaving a 400- to 500-km-deep thermally stratified layer below the core-mantle boundary, and challenges proposed thermal convection in Fe-Si liquid outer core.

5.
Phys Rev Lett ; 125(12): 127601, 2020 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-33016718

RESUMO

Using first-principles calculations, we predict a lightweight room-temperature ferroelectric carbon-boron framework in a host-guest clathrate structure. This ferroelectric clathrate, with composition ScB_{3}C_{3}, exhibits high polarization density and low mass density compared with widely used commercial ferroelectrics. Molecular dynamics simulations show spontaneous polarization with a moderate above-room-temperature T_{c} of ∼370 K, which implies large susceptibility and possibly large electrocaloric and piezoelectric constants at room temperature. Our findings open the possibility for a new class of ferroelectric materials with potential across a broad range of applications.

6.
Phys Rev Lett ; 125(7): 078501, 2020 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-32857557

RESUMO

We measure the electrical resistivity of hcp iron up to ∼170 GPa and ∼3000 K using a four-probe van der Pauw method coupled with homogeneous flattop laser heating in a DAC, and compute its electrical and thermal conductivity by first-principles molecular dynamics including electron-phonon and electron-electron scattering. We find that the measured resistivity of hcp iron increases almost linearly with temperature, and is consistent with our computations. The results constrain the resistivity and thermal conductivity of hcp iron to ∼80±5 µΩ cm and ∼100±10 W m^{-1} K^{-1}, respectively, at conditions near the core-mantle boundary. Our results indicate an adiabatic heat flow of ∼10±1 TW out of the core, supporting a present-day geodynamo driven by thermal and compositional convection.

7.
J Phys Chem Lett ; 10(17): 5019-5026, 2019 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-31342739

RESUMO

The prediction of reaction pathways for solid-solid transformations remains a key challenge. Here, we develop a pathway sampling method via swarm intelligence and graph theory and demonstrate that our pallas method is an effective tool to help understand phase transformations in solid-state systems. The method is capable of finding low-energy transition pathways between two minima without having to specify any details of the transition mechanism a priori. We benchmarked our pallas method against known phase transitions in cadmium selenide (CdSe) and silicon (Si). pallas readily identifies previously reported, low-energy phase transition pathways for the wurtzite to rock-salt transition in CdSe and reveals a novel lower-energy pathway that has not yet been observed. In addition, pallas provides detailed information that explains the complex phase transition sequence observed during the decompression of Si from high pressure. Given the efficiency to identify low-barrier-energy reaction pathways, the pallas methodology represents a promising tool for materials by design with valuable insights for novel synthesis.

8.
Molecules ; 24(3)2019 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-30700050

RESUMO

Crystalline polar metallocenes are potentially useful active materials as piezoelectrics, ferroelectrics, and multiferroics. Within density functional theory (DFT), we computed structural properties, energy differences for various phases, molecular configurations, and magnetic states, computed polarizations for different polar crystal structures, and computed dipole moments for the constituent molecules with a Wannier function analysis. Of the systems studied, Mn2(C9H9N)2 is the most promising as a multiferroic material, since the ground state is both polar and ferromagnetic. We found that the predicted crystalline polarizations are 30⁻40% higher than the values that would be obtained from the dipole moments of the isolated constituent molecules, due to the local effects of the self-consistent internal electric field, indicating high polarizabilities.


Assuntos
Metalocenos/química , Modelos Moleculares
9.
Phys Rev Lett ; 121(9): 096601, 2018 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-30230853

RESUMO

We compute the thermal conductivity and electrical resistivity of solid hcp Fe to pressures and temperatures of Earth's core. We find significant contributions from electron-electron scattering, usually neglected at high temperatures in transition metals. Our calculations show a quasilinear relation between the electrical resistivity and temperature for hcp Fe at extreme high pressures. We obtain thermal and electrical conductivities that are consistent with experiments considering reasonable error. The predicted thermal conductivity is reduced from previous estimates that neglect electron-electron scattering. Our estimated thermal conductivity for the outer core is 77±10 W m^{-1} K^{-1} and is consistent with a geodynamo driven by thermal convection.

10.
Phys Rev Lett ; 119(20): 207601, 2017 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-29219344

RESUMO

Piezoelectrics with negative longitudinal piezoelectric coefficients will contract in the direction of an applied electric field. Such piezoelectrics are thought to be rare, but there is no fundamental physics preventing the realization of negative longitudinal piezoelectric effect in a single-phase material. Using first-principles calculations, we demonstrate that several hexagonal ABC ferroelectrics possess significant negative longitudinal piezoelectric effects. The data mining of a first-principles-based database of piezoelectrics reveals that this effect is a general phenomenon. The origin of this unusual piezoelectric response relies on the strong ionic bonds associated with small effective charges and rigid potential energy surfaces. Moreover, ferroelectrics with negative longitudinal piezoelectric coefficients show anomalous pressure-enhanced ferroelectricity. Our results offer design principles to aid the search for new piezoelectrics for novel electromechanical device applications.

11.
Phys Rev Lett ; 119(17): 177602, 2017 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-29219448

RESUMO

We provide a fundamental insight into the microscopic mechanisms of the aging processes. Using large-scale molecular dynamics simulations of the prototypical ferroelectric material PbTiO_{3}, we demonstrate that the experimentally observed aging phenomena can be reproduced from intrinsic interactions of defect dipoles related to dopant-vacancy associates, even in the absence of extrinsic effects. We show that variation of the dopant concentration modifies the material's hysteretic response. We identify a universal method to reduce loss and tune the electromechanical properties of inexpensive ceramics for efficient technologies.

12.
J Phys Condens Matter ; 29(48): 485704, 2017 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-29052555

RESUMO

We study the electrocaloric effect in the classic ferroelectric BaTiO3 through a series of phase transitions driven by applied electric field and temperature. We find both negative and positive electrocaloric effects, with the negative electrocaloric effect, where temperature decreases with applied field, in monoclinic phases. Macroscopic polarization rotation is evident through the monoclinic and orthorhombic phases under applied field, and is responsible for the negative electrocaloric effect.

13.
J Phys Condens Matter ; 29(24): 244003, 2017 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-28443824

RESUMO

Charge-neutral 180° domain walls that separate domains of antiparallel polarization directions are common structural topological defects in ferroelectrics. In normal ferroelectrics, charged 180° domain walls running perpendicular to the polarization directions are highly energetically unfavorable because of the depolarization field and are difficult to stabilize. We explore both neutral and charged 180° domain walls in hyperferroelectrics, a class of proper ferroelectrics with persistent polarization in the presence of a depolarization field, using density functional theory. We obtain zero temperature equilibrium structures of head-to-head and tail-to-tail walls in recently discovered ABC-type hexagonal hyperferroelectrics. Charged domain walls can also be stabilized in canonical ferroelectrics represented by LiNbO3 without any dopants, defects or mechanical clamping. First-principles electronic structure calculations show that charged domain walls can reduce and even close the band gap of host materials and support quasi-two-dimensional electron(hole) gas with enhanced electrical conductivity.

14.
J Chem Phys ; 143(10): 104301, 2015 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-26374029

RESUMO

We report an accurate study of interactions between benzene molecules using variational quantum Monte Carlo (VMC) and diffusion quantum Monte Carlo (DMC) methods. We compare these results with density functional theory using different van der Waals functionals. In our quantum Monte Carlo (QMC) calculations, we use accurate correlated trial wave functions including three-body Jastrow factors and backflow transformations. We consider two benzene molecules in the parallel displaced geometry, and find that by highly optimizing the wave function and introducing more dynamical correlation into the wave function, we compute the weak chemical binding energy between aromatic rings accurately. We find optimal VMC and DMC binding energies of -2.3(4) and -2.7(3) kcal/mol, respectively. The best estimate of the coupled-cluster theory through perturbative triplets/complete basis set limit is -2.65(2) kcal/mol [Miliordos et al., J. Phys. Chem. A 118, 7568 (2014)]. Our results indicate that QMC methods give chemical accuracy for weakly bound van der Waals molecular interactions, comparable to results from the best quantum chemistry methods.


Assuntos
Benzeno/química , Modelos Químicos , Método de Monte Carlo , Difusão , Dimerização , Teoria Quântica , Eletricidade Estática
15.
Bioinspir Biomim ; 10(3): 036005, 2015 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-25909346

RESUMO

Four species of cacti were chosen for this study: Copiapoa cinerea var. haseltoniana, Ferocactus wislizenii, Mammillaria columbiana subsp. yucatanensis and Parodia mammulosa. It has been reported that dew condenses on the spines of C. cinerea and that it does not on the spines of F. wislizenii, and our preliminary observations of M. columbiana and P. mammulosa revealed a potential for collecting dew water. This study found all four cacti to harvest dew on their stems and spines (albeit rarely on the spines of F. wislizenii). Dew harvesting experiments were carried out in the UK, recording an increase in cacti mass on dewy nights. By applying a ranking relative to a polymethyl methacrylate (Plexiglas) reference plate located nearby, it was found that C. cinerea collected the most airborne moisture followed by M. columbiana, P. mammulosa and F. wislizenii respectively, with mean efficiency ratio with respect to the Plexiglas reference of 3.48 ± 0.5, 2.44 ± 0.06, 1.81 ± 0.14 and 1.27 ± 0.49 on observed dewy nights. A maximum yield of normalized performance of 0.72 ± 0.006 l/m(-2) on one dewy night was recorded for C. cinerea. Removing the spines from M. columbiana was found to significantly decrease its dew harvesting efficiency. The spines of three of the species were found to be hydrophilic in nature, while F. wislizenii was hydrophobic; the stems of all four species were hydrophilic. The results of this study could be translated into designing a biomimetic water collecting device that utilizes cactus spines and their microstructures.


Assuntos
Materiais Biomiméticos/química , Cactaceae/química , Cactaceae/classificação , Caules de Planta/química , Caules de Planta/classificação , Água/química , Adsorção , Teste de Materiais , Especificidade da Espécie
16.
Nature ; 517(7536): 605-7, 2015 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-25631449

RESUMO

Earth's magnetic field has been thought to arise from thermal convection of molten iron alloy in the outer core, but recent density functional theory calculations have suggested that the conductivity of iron is too high to support thermal convection, resulting in the investigation of chemically driven convection. These calculations for resistivity were based on electron-phonon scattering. Here we apply self-consistent density functional theory plus dynamical mean-field theory (DFT + DMFT) to iron and find that at high temperatures electron-electron scattering is comparable to the electron-phonon scattering, bringing theory into agreement with experiments and solving the transport problem in Earth's core. The conventional thermal dynamo picture is safe. We find that electron-electron scattering of d electrons is important at high temperatures in transition metals, in contrast to textbook analyses since Mott, and that 4s electron contributions to transport are negligible, in contrast to numerous models used for over fifty years. The DFT+DMFT method should be applicable to other high-temperature systems where electron correlations are important.

17.
Proc Natl Acad Sci U S A ; 111(13): 4792-7, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24639543

RESUMO

Raman spectroscopy of dense hydrogen and deuterium performed to 325 GPa at 300 K reveals previously unidentified transitions. Detailed analysis of the spectra from multiple experimental runs, together with comparison with previous infrared and Raman measurements, provides information on structural modifications of hydrogen as a function of density through the I-III-IV transition sequence, beginning near 200 GPa at 300 K. The data suggest that the transition sequence at these temperatures proceeds by formation of disordered stacking of molecular and distorted layers. Weaker spectral changes are observed at 250, 285, and 300 GPa, that are characterized by discontinuities in pressure shifts of Raman frequencies, and changes in intensities and linewidths. The results indicate changes in structure and bonding, molecular orientational order, and electronic structure of dense hydrogen at these conditions. The data suggest the existence of new phases, either variations of phase IV, or altogether new structures.

18.
Bioinspir Biomim ; 8(4): 045005, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24263056

RESUMO

Layer-by-layer assembly is a powerful and flexible thin film process that has successfully reproduced biomimetic photonic systems such as structural colour. While most of the seminal work has been carried out using slow and ultimately unscalable immersion assembly, recent developments using spray layer-by-layer assembly provide a platform for addressing challenges to scale-up and manufacturability. A series of manufacturing systems has been developed to increase production throughput by orders of magnitude, making commercialized structural colour possible. Inspired by biomimetic photonic structures we developed and demonstrated a heat management system that relies on constructive reflection of near infrared radiation to bring about dramatic reductions in heat content.


Assuntos
Materiais Biomiméticos/síntese química , Indústrias/instrumentação , Dispositivos Ópticos , Refratometria/instrumentação , Refratometria/métodos , Titânio/química , Cristalização/métodos , Desenho de Equipamento , Gases/química , Indústrias/métodos , Luz , Teste de Materiais , Fótons , Espalhamento de Radiação
19.
Proc Natl Acad Sci U S A ; 110(34): 13757-62, 2013 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-23904476

RESUMO

Theoretical calculations and an assessment of recent experimental results for dense solid hydrogen lead to a unique scenario for the metallization of hydrogen under pressure. The existence of layered structures based on graphene sheets gives rise to an electronic structure related to unique features found in graphene that are well studied in the carbon phase. The honeycombed layered structure for hydrogen at high density, first predicted in molecular calculations, produces a complex optical response. The metallization of hydrogen is very different from that originally proposed via a phase transition to a close-packed monoatomic structure, and different from simple metallization recently used to interpret recent experimental data. These different mechanisms for metallization have very different experimental signatures. We show that the shift of the main visible absorption edge does not constrain the point of band gap closure, in contrast with recent claims. This conclusion is confirmed by measured optical spectra, including spectra obtained to low photon energies in the infrared region for phases III and IV of hydrogen.


Assuntos
Eletrônica/métodos , Hidrogênio/química , Metais/química , Modelos Químicos , Estrutura Molecular , Pressão , Análise Espectral , Temperatura
20.
Phys Rev Lett ; 109(18): 187604, 2012 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-23215332

RESUMO

We use molecular dynamics with a first-principles-based shell model potential to study the electrocaloric effect (ECE) in lithium niobate, LiNbO(3), and find a giant electrocaloric effect along a line passing through the ferroelectric transition. With an applied electric field, a line of maximum ECE passes through the zero field ferroelectric transition, continuing along a Widom line at high temperatures with increasing fields, and along the instability that leads to homogeneous ferroelectric switching below T(c) with an applied field antiparallel to the spontaneous polarization. This line is defined as the minimum in the inverse capacitance under an applied electric field. We investigate the effects of pressure, temperature and an applied electric field on the ECE. The behavior we observe in LiNbO(3) should generally apply to ferroelectrics; we therefore suggest that the operating temperature for refrigeration and energy scavenging applications should be above the ferroelectric transition region to obtain a large electrocaloric response. The relationship between T(c), the Widom line, and homogeneous switching should be universal among ferroelectrics, relaxors, multiferroics, and the same behavior should be found under applied magnetic fields in ferromagnets.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...