Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antimicrob Agents Chemother ; 68(5): e0158723, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38534112

RESUMO

AZD7442 is a combination of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-neutralizing antibodies, tixagevimab and cilgavimab, developed for pre-exposure prophylaxis (PrEP) and treatment of coronavirus disease 2019 (COVID-19). Using data from eight clinical trials, we describe a population pharmacokinetic (popPK) model of AZD7442 and show how modeling of "interim" data accelerated decision-making during the COVID-19 pandemic. The final model was a two-compartmental distribution model with first-order absorption and elimination, including standard allometric exponents for the effect of body weight on clearance and volume. Other covariates included were as follows: sex, age >65 years, body mass index ≥30 kg/m2, and diabetes on absorption rate; diabetes on clearance; Black race on central volume; and intramuscular (IM) injection site on bioavailability. Simulations indicated that IM injection site and body weight had > 20% effects on AZD7442 exposure, but no covariates were considered to have a clinically relevant impact requiring dose adjustment. The pharmacokinetics of AZD7442, cilgavimab, and tixagevimab were comparable and followed linear kinetics with extended half-lives (median 78.6 days for AZD7442), affording prolonged protection against susceptible SARS-CoV-2 variants. Comparison of popPK simulations based on "interim data" with a target concentration based on 80% viral inhibition and assuming 1.81% partitioning into the nasal lining fluid supported a decision to double the PrEP dosage from 300 mg to 600 mg to prolong protection against Omicron variants. Serum AZD7442 concentrations in adolescents weighing 40-95 kg were predicted to be only marginally different from those observed in adults, supporting authorization for use in adolescents before clinical data were available. In these cases, popPK modeling enabled accelerated clinical decision-making.


Assuntos
Anticorpos Monoclonais Humanizados , Tratamento Farmacológico da COVID-19 , COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/efeitos dos fármacos , Feminino , Masculino , Pessoa de Meia-Idade , Anticorpos Monoclonais Humanizados/farmacocinética , Anticorpos Monoclonais Humanizados/uso terapêutico , Idoso , Adulto , COVID-19/prevenção & controle , Antivirais/farmacocinética , Antivirais/uso terapêutico , Adulto Jovem , Adolescente , Anticorpos Neutralizantes/sangue
2.
Infect Dis Ther ; 13(3): 521-533, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38403865

RESUMO

INTRODUCTION: In the phase 3 TACKLE study, outpatient treatment with AZD7442 (tixagevimab/cilgavimab) was well tolerated and significantly reduced progression to severe disease or death through day 29 in adults with mild-to-moderate coronavirus disease 2019 (COVID-19) at the primary analysis. Here, we report data from the final analysis of the TACKLE study, performed after approximately 15 months' follow-up. METHODS: Eligible participants were randomized 1:1 and dosed within 7 days of symptom onset with 600 mg intramuscular AZD7442 (n = 456; 300 mg tixagevimab/300 mg cilgavimab) or placebo (n = 454). RESULTS: Severe COVID-19 or death through day 29 occurred in 4.4% and 8.8% of participants who received AZD7442 or placebo, a relative risk reduction (RRR) of 50.4% [95% confidence interval (CI) 14.4, 71.3; p = 0.0096]; among participants dosed within 5 days of symptom onset, the RRR was 66.9% (95% CI 31.1, 84.1; p = 0.002). Death from any cause or hospitalization for COVID-19 complications or sequelae through day 169 occurred in 5.0% of participants receiving AZD7442 versus 9.7% receiving placebo, an RRR of 49.2% (95% CI 14.7, 69.8; p = 0.009). Adverse events occurred in 55.5% and 55.9% of participants who received AZD7442 or placebo, respectively, and were mostly mild or moderate in severity. Serious adverse events occurred in 10.2% and 14.4% of participants who received AZD7442 or placebo, respectively, and deaths occurred in 1.8% of participants in both groups. Serum concentration-time profiles recorded over 457 days were similar for AZD7442, tixagevimab, and cilgavimab, and were consistent with the extended half-life reported for AZD7442 (approx. 90 days). CONCLUSIONS: AZD7442 reduced the risk of progression to severe COVID-19, hospitalization, and death, was well tolerated through 15 months, and exhibited predictable pharmacokinetics in outpatients with mild-to-moderate COVID-19. These data support the long-term safety of using long-acting monoclonal antibodies to treat COVID-19. TRIAL REGISTRATION: Clinicaltrials.gov, NCT04723394. ( https://clinicaltrials.gov/study/NCT04723394 .


The body's immune system produces proteins called antibodies that specifically target foreign substances such as viruses. AZD7442 is a combination of two antibodies (called tixagevimab and cilgavimab) that bind to the severe acute respiratory syndrome coronavirus 2 virus spike protein, preventing it from causing coronavirus disease 2019 (COVID-19). AZD7442 was designed to be "long-acting" and therefore provide prolonged protection against COVID-19 lasting several months from a single dose. It was tested in a clinical trial (TACKLE) to see if it could prevent people who had recently developed symptoms of COVID-19 from getting sicker, being hospitalized, or dying. Around 900 adults took part in this clinical trial. Half of this group were treated with a dose of AZD7442, given as two injections. The other half received a placebo (injections that look like the AZD7442 injections but contain no medicine). The effect of AZD7442 treatment against COVID-19 was monitored over 6 months, and safety was monitored over 15 months. Around the same percentage of participants in the trial reported side effects with AZD7442 and placebo, suggesting there were no safety issues with AZD7442. AZD7442 treatment reduced the risk of participants getting severe COVID-19 or dying from COVID-19 by approximately half, compared with the placebo group. Participants receiving AZD7442 also had fewer hospitalizations due to COVID-19 complications, compared with the placebo group. These results showed the long-term safety of using long-acting antibodies such as AZD7442 as a treatment for COVID-19.

3.
Biochim Biophys Acta Mol Basis Dis ; 1869(6): 166697, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37054999

RESUMO

AIMS: To determine if changes in polyamines metabolism occur during non-alcoholic steatohepatitis (NASH) in human patients and mice, as well as to assess systemic and liver-specific effects of spermidine administration into mice suffering from advanced NASH. MATERIALS AND METHODS: Human fecal samples were collected from 50 healthy and 50 NASH patients. For the preclinical studies C57Bl6/N male mice fed GAN or NIH-31 diet for 6 months were ordered from Taconic and liver biopsy was performed. Based on severity of liver fibrosis, body composition and body weight, the mice from both dietary groups were randomized into another two groups: half receiving 3 mM spermidine in drinking water, half normal water for subsequent 12 weeks. Body weight was measured weekly and glucose tolerance and body composition were assessed at the end. Blood and organs were collected during necropsy, and intrahepatic immune cells were isolated for flow cytometry analysis. RESULTS: Metabolomic analysis of human and murine feces confirmed that levels of polyamines decreased along NASH progression. Administration of exogenous spermidine to the mice from both dietary groups did not affect body weight, body composition or adiposity. Moreover, incidence of macroscopic hepatic lesions was higher in NASH mice receiving spermidine. On the other hand, spermidine normalized numbers of Kupffer cells in the livers of mice suffering from NASH, although these beneficial effects did not translate into improved liver steatosis or fibrosis severity. CONCLUSION: Levels of polyamines decrease during NASH in mice and human patients but spermidine administration does not improve advanced NASH.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Masculino , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/metabolismo , Espermidina/farmacologia , Modelos Animais de Doenças , Poliaminas , Dieta Hiperlipídica , Peso Corporal , Suplementos Nutricionais
4.
Front Immunol ; 13: 1029085, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36532044

RESUMO

Resident macrophages play a unique role in the maintenance of tissue function. As phagocytes, they are an essential first line defenders against pathogens and much of the initial characterization of these cells was focused on their interaction with viral and bacterial pathogens. However, these cells are increasingly recognized as contributing to more than just host defense. Through cytokine production, receptor engagement and gap junction communication resident macrophages tune tissue inflammatory tone, influence adaptive immune cell phenotype and regulate tissue structure and function. This review highlights resident macrophages in the liver and lung as they hold unique roles in the maintenance of the interface between the circulatory system and the external environment. As such, we detail the developmental origin of these cells, their contribution to host defense and the array of tools these cells use to regulate tissue homeostasis.


Assuntos
Fígado , Macrófagos , Pulmão , Fagócitos , Homeostase
5.
Front Immunol ; 13: 836492, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35493482

RESUMO

Severe COVID-19 can be associated with a prothrombotic state, increasing risk of morbidity and mortality. The SARS-CoV-2 spike glycoprotein is purported to directly promote platelet activation via the S1 subunit and is cleaved from host cells during infection. High plasma concentrations of S1 subunit are associated with disease progression and respiratory failure during severe COVID-19. There is limited evidence on whether COVID-19 vaccine-induced spike protein is similarly cleaved and on the immediate effects of vaccination on host immune responses or hematology parameters. We investigated vaccine-induced S1 subunit cleavage and effects on hematology parameters using AZD1222 (ChAdOx1 nCoV-19), a simian, replication-deficient adenovirus-vectored COVID-19 vaccine. We observed S1 subunit cleavage in vitro following AZD1222 transduction of HEK293x cells. S1 subunit cleavage also occurred in vivo and was detectable in sera 12 hours post intramuscular immunization (1x1010 viral particles) in CD-1 mice. Soluble S1 protein levels decreased within 3 days and were no longer detectable 7-14 days post immunization. Intravenous immunization (1x109 viral particles) produced higher soluble S1 protein levels with similar expression kinetics. Spike protein was undetectable by immunohistochemistry 14 days post intramuscular immunization. Intramuscular immunization resulted in transiently lower platelet (12 hours) and white blood cell (12-24 hours) counts relative to vehicle. Similarly, intravenous immunization resulted in lower platelet (24-72 hours) and white blood cell (12-24 hours) counts, and increased neutrophil (2 hours) counts. The responses observed with either route of immunization represent transient hematologic changes and correspond to expected innate immune responses to adenoviral infection.


Assuntos
COVID-19 , Hematologia , Vacinas Virais , Animais , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19 , ChAdOx1 nCoV-19 , Humanos , Camundongos , Camundongos Endogâmicos BALB C , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus
6.
Sci Rep ; 12(1): 7961, 2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35562373

RESUMO

Rare cases of thrombosis with thrombocytopenia syndrome (TTS) have been reported after AZD1222. Anti-platelet factor-4 (PF4) antibodies were observed in patients following presentation of TTS, however it is unclear if AZD1222 was responsible for inducing production of anti-PF4. Paired samples (baseline and day-15) from a phase 3 trial of AZD1222 vs placebo were analyzed for anti-PF4 levels; 19/1727 (1.1%, AZD1222) vs 7/857 (0.8%, placebo) participants were anti-PF4-IgG-negative at baseline but had moderate Day-15 levels (P = 0.676) and 0/35 and 1/20 (5.0%) had moderate levels at baseline but high Day-15 levels. These data indicate that AZD1222 does not induce a clinically relevant general increase in anti-PF4 IgG.


Assuntos
COVID-19 , Trombocitopenia , Trombose , ChAdOx1 nCoV-19 , Humanos , Imunoglobulina G , Fatores Imunológicos , Fator Plaquetário 4 , Trombocitopenia/etiologia , Vacinação
7.
Sci Adv ; 7(49): eabl8213, 2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34851659

RESUMO

Vaccines derived from chimpanzee adenovirus Y25 (ChAdOx1), human adenovirus type 26 (HAdV-D26), and human adenovirus type 5 (HAdV-C5) are critical in combatting the severe acute respiratory coronavirus 2 (SARS-CoV-2) pandemic. As part of the largest vaccination campaign in history, ultrarare side effects not seen in phase 3 trials, including thrombosis with thrombocytopenia syndrome (TTS), a rare condition resembling heparin-induced thrombocytopenia (HIT), have been observed. This study demonstrates that all three adenoviruses deployed as vaccination vectors versus SARS-CoV-2 bind to platelet factor 4 (PF4), a protein implicated in the pathogenesis of HIT. We have determined the structure of the ChAdOx1 viral vector and used it in state-of-the-art computational simulations to demonstrate an electrostatic interaction mechanism with PF4, which was confirmed experimentally by surface plasmon resonance. These data confirm that PF4 is capable of forming stable complexes with clinically relevant adenoviruses, an important step in unraveling the mechanisms underlying TTS.

8.
Microorganisms ; 9(7)2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34209573

RESUMO

The gut microbiota has emerged as a key mediator of human physiology, and germ-free mice have been essential in demonstrating a role for the microbiome in disease. Preclinical models using conventional mice offer the advantage of working with a mature immune system. However, optimal protocols for fecal microbiota transplant (FMT) engraftment in conventional mice are yet to be established. Conventional BALB/c mice were randomized to receive 3-day (3d) or 3-week (3w) antibiotic (ABX) regimen in their drinking water followed by 1 or 5-daily FMTs from a human donor. Fecal samples were collected longitudinally and characterized using 16S ribosomal RNA (rRNA) sequencing. Semi-targeted metabolomic profiling of fecal samples was also done with liquid chromatography-mass spectrometry (LC-MS). Lastly, we sought to confirm our findings in BKS mice. Recovery of baseline diversity scores were greatest in the 3d groups, driven by re-emergence of mouse commensal microbiota, whereas the most resemblance to donor microbiota was seen in the 3w + 5-FMT group. Amplicon sequence variants (ASVs) that were linked to the input material (human ASVs) engrafted to a significantly greater extent when compared to mouse ASVs in the 3-week groups but not the 3-day groups. Lastly, comparison of metabolomic profiles revealed distinct functional profiles by ABX regimen. These results indicate successful model optimization and emphasize the importance of ABX duration and frequency of FMT dosing; the most stable and reliable colonization by donor ASVs was seen in the 3wk + 5-FMT group.

9.
Ann Am Thorac Soc ; 18(7): 1087-1097, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34242148

RESUMO

Pneumonia causes a significant burden of disease worldwide. Although all populations are at risk of pneumonia, those at extremes of age and those with immunosuppressive disorders, underlying respiratory disease, and critical illness are particularly vulnerable. Although clinical practice guidelines addressing the management and treatment of pneumonia exist, few of the supporting studies focus on the crucial contributions of the host in pneumonia pathogenesis and recovery. Such essential considerations include the host risk factors that lead to susceptibility to lung infections; biomarkers reflecting the host response and the means to pursue host-directed pneumonia therapy; systemic effects of pneumonia on the host; and long-term health outcomes after pneumonia. To address these gaps, the Pneumonia Working Group of the Assembly on Pulmonary Infection and Tuberculosis led a workshop held at the American Thoracic Society meeting in May 2018 with overarching objectives to foster attention, stimulate research, and promote funding for short-term and long-term investigations into the host contributions to pneumonia. The workshop involved participants from various disciplines with expertise in lung infection, pneumonia, sepsis, immunocompromised patients, translational biology, data science, genomics, systems biology, and clinical trials. This workshop report summarizes the presentations and discussions and important recommendations for future clinical pneumonia studies. These recommendations include establishing consensus disease and outcome definitions, improved phenotyping, development of clinical study networks, standardized data and biospecimen collection and protocols, and development of innovative trial designs.


Assuntos
Pneumonia , Consenso , Estado Terminal , Humanos , Hospedeiro Imunocomprometido , Pneumonia/terapia , Relatório de Pesquisa , Estados Unidos
10.
Sci Adv ; 7(10)2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33674305

RESUMO

The underlying mechanisms contributing to injury-induced infection susceptibility remain poorly understood. Here, we describe a rapid increase in neutrophil cell numbers in the lungs following induction of thermal injury. These neutrophils expressed elevated levels of programmed death ligand 1 (PD-L1) and exhibited altered gene expression profiles indicative of a reparative population. Upon injury, neutrophils migrate from the bone marrow to the skin but transiently arrest in the lung vasculature. Arrested neutrophils interact with programmed cell death protein 1 (PD-1) on lung endothelial cells. A period of susceptibility to infection is linked to PD-L1+ neutrophil accumulation in the lung. Systemic treatment of injured animals with an anti-PD-L1 antibody prevented neutrophil accumulation in the lung and reduced susceptibility to infection but augmented skin healing, resulting in increased epidermal growth. This work provides evidence that injury promotes changes to neutrophils that are important for wound healing but contribute to infection susceptibility.

11.
Front Endocrinol (Lausanne) ; 11: 592157, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33193105

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is a spectrum of disorders, ranging from fatty liver to a more insulin resistant, inflammatory and fibrotic state collectively termed non-alcoholic steatohepatitis (NASH). In the United States, 30%-40% of the adult population has fatty liver and 3%-12% has NASH, making it a major public health concern. Consumption of diets high in fat, obesity and Type II diabetes (T2D) are well-established risk factors; however, there is a growing body of literature suggesting a role for the gut microbiome in the development and progression of NAFLD. The gut microbiota is separated from the body by a monolayer of intestinal epithelial cells (IECs) that line the small intestine and colon. The IEC layer is exposed to luminal contents, participates in selective uptake of nutrients and acts as a barrier to passive paracellular permeability of luminal contents through the expression of tight junctions (TJs) between adjacent IECs. A dysbiotic gut microbiome also leads to decreased gut barrier function by disrupting TJs and the gut vascular barrier (GVB), thus exposing the liver to microbial endotoxins. These endotoxins activate hepatic Toll-like receptors (TLRs), further promoting the progression of fatty liver to a more inflammatory and fibrotic NASH phenotype. This review will summarize major findings pertaining to aforementioned gut-liver interactions and its role in the pathophysiology of NAFLD.


Assuntos
Disbiose/complicações , Microbioma Gastrointestinal , Hepatopatia Gordurosa não Alcoólica/patologia , Animais , Disbiose/microbiologia , Humanos , Hepatopatia Gordurosa não Alcoólica/etiologia
13.
Artigo em Inglês | MEDLINE | ID: mdl-32152087

RESUMO

Antibiotics revolutionized the treatment of infectious diseases; however, it is now clear that broad-spectrum antibiotics alter the composition and function of the host's microbiome. The microbiome plays a key role in human health, and its perturbation is increasingly recognized as contributing to many human diseases. Widespread broad-spectrum antibiotic use has also resulted in the emergence of multidrug-resistant pathogens, spurring the development of pathogen-specific strategies such as monoclonal antibodies (MAbs) to combat bacterial infection. Not only are pathogen-specific approaches not expected to induce resistance in nontargeted bacteria, but they are hypothesized to have minimal impact on the gut microbiome. Here, we compare the effects of antibiotics, pathogen-specific MAbs, and their controls (saline or control IgG [c-IgG]) on the gut microbiome of 7-week-old, female, C57BL/6 mice. The magnitude of change in taxonomic abundance, bacterial diversity, and bacterial metabolites, including short-chain fatty acids (SCFA) and bile acids in the fecal pellets from mice treated with pathogen-specific MAbs, was no different from that with animals treated with saline or an IgG control. Conversely, dramatic changes were observed in the relative abundance, as well as alpha and beta diversity, of the fecal microbiome and bacterial metabolites in the feces of all antibiotic-treated mice. Taken together, these results indicate that pathogen-specific MAbs do not alter the fecal microbiome like broad-spectrum antibiotics and may represent a safer, more-targeted approach to antibacterial therapy.


Assuntos
Antibacterianos/farmacologia , Anticorpos Monoclonais/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Animais , Ácidos e Sais Biliares/metabolismo , DNA Bacteriano/análise , Ácidos Graxos/metabolismo , Fezes/microbiologia , Feminino , Camundongos , Camundongos Endogâmicos C57BL , RNA Ribossômico 16S/genética , Organismos Livres de Patógenos Específicos
14.
World J Gastroenterol ; 25(33): 4904-4920, 2019 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-31543682

RESUMO

BACKGROUND: The trans-fat containing AMLN (amylin liver non-alcoholic steatohepatitis, NASH) diet has been extensively validated in C57BL/6J mice with or without the Lepob/Lepob (ob/ob) mutation in the leptin gene for reliably inducing metabolic and liver histopathological changes recapitulating hallmarks of NASH. Due to a recent ban on trans-fats as food additive, there is a marked need for developing a new diet capable of promoting a compatible level of disease in ob/ob and C57BL/6J mice. AIM: To develop a biopsy-confirmed mouse model of NASH based on an obesogenic diet with trans-fat substituted by saturated fat. METHODS: Male ob/ob mice were fed AMLN diet or a modified AMLN diet with trans-fat (Primex shortening) substituted by equivalent amounts of palm oil [Gubra amylin NASH, (GAN) diet] for 8, 12 and 16 wk. C57BL/6J mice were fed the same diets for 28 wk. AMLN and GAN diets had similar caloric content (40% fat kcal), fructose (22%) and cholesterol (2%) level. RESULTS: The GAN diet was more obesogenic compared to the AMLN diet and impaired glucose tolerance. Biopsy-confirmed steatosis, lobular inflammation, hepatocyte ballooning, fibrotic liver lesions and hepatic transcriptome changes were similar in ob/ob mice fed the GAN or AMLN diet. C57BL/6J mice developed a mild to moderate fibrotic NASH phenotype when fed the same diets. CONCLUSION: Substitution of Primex with palm oil promotes a similar phenotype of biopsy-confirmed NASH in ob/ob and C57BL/6J mice, making GAN diet-induced obese mouse models suitable for characterizing novel NASH treatments.


Assuntos
Modelos Animais de Doenças , Fígado/patologia , Hepatopatia Gordurosa não Alcoólica/etiologia , Óleo de Palmeira/efeitos adversos , Animais , Biópsia , Dieta Hiperlipídica/efeitos adversos , Humanos , Leptina/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Hepatopatia Gordurosa não Alcoólica/patologia , Ácidos Graxos trans/efeitos adversos
15.
JCI Insight ; 4(14)2019 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-31341107

RESUMO

Postinfluenza bacterial superinfections cause increased morbidity and mortality compared with singular infection with influenza during both pandemics and seasonal epidemics. Vaccines and current treatments provide limited benefit, a rationale to conduct studies utilizing alternative therapies. FY1 and an optimized version, MEDI8852, anti-influenza HA mAbs, have been shown to neutralize influenza virus during singular influenza infection. MEDI4893*, an anti-Staphylococcus aureus α-toxin mAb, has been shown to improve survival when administered prophylactically prior to S. aureus pneumonia. Our objective was to determine if mAbs can improve survival during postinfluenza bacterial pneumonia. We administered FY1 in a murine model of postinfluenza methicillin-resistant S. aureus (MRSA) pneumonia and observed improved survival rates when given early during the course of influenza infection. Our findings indicate decreased lung injury and increased uptake and binding of bacteria by macrophages in the mice that received FY1 earlier in the course of influenza infection, corresponding to decreased bacterial burden. We also observed improved survival when mice were treated with a combination of FY1 and MEDI4893* late during the course of postinfluenza MRSA pneumonia. In conclusion, both FY1 and MEDI4893* prolong survival when used in a murine model of postinfluenza MRSA pneumonia, suggesting pathogen-specific mAbs as a possible therapeutic in the context of bacterial superinfection.


Assuntos
Antibacterianos/uso terapêutico , Antivirais/uso terapêutico , Influenza Humana/tratamento farmacológico , Pneumonia Estafilocócica/tratamento farmacológico , Superinfecção/tratamento farmacológico , Animais , Antibacterianos/farmacologia , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais Humanizados/farmacologia , Anticorpos Monoclonais Humanizados/uso terapêutico , Antivirais/farmacologia , Anticorpos Amplamente Neutralizantes/farmacologia , Anticorpos Amplamente Neutralizantes/uso terapêutico , Modelos Animais de Doenças , Quimioterapia Combinada/métodos , Humanos , Vírus da Influenza A Subtipo H1N1/imunologia , Vírus da Influenza A Subtipo H1N1/patogenicidade , Influenza Humana/imunologia , Influenza Humana/mortalidade , Influenza Humana/virologia , Pulmão/imunologia , Pulmão/microbiologia , Pulmão/virologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Masculino , Staphylococcus aureus Resistente à Meticilina/imunologia , Staphylococcus aureus Resistente à Meticilina/patogenicidade , Camundongos , Neutrófilos/efeitos dos fármacos , Neutrófilos/imunologia , Pneumonia Estafilocócica/imunologia , Pneumonia Estafilocócica/microbiologia , Pneumonia Estafilocócica/mortalidade , Superinfecção/imunologia , Superinfecção/microbiologia , Superinfecção/mortalidade , Análise de Sobrevida , Resultado do Tratamento
16.
Respir Res ; 20(1): 162, 2019 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-31324219

RESUMO

Animal models remain invaluable for study of respiratory diseases, however, translation of data generated in genetically homogeneous animals housed in a clean and well-controlled environment does not necessarily provide insight to the human disease situation. In vitro human systems such as air liquid interface (ALI) cultures and organ-on-a-chip models have attempted to bridge the divide between animal models and human patients. However, although 3D in nature, these models struggle to recreate the architecture and complex cellularity of the airways and parenchyma, and therefore cannot mimic the complex cell-cell interactions in the lung. To address this issue, lung slices have emerged as a useful ex vivo tool for studying the respiratory responses to inflammatory stimuli, infection, and novel drug compounds. This review covers the practicality of precision cut lung slice (PCLS) generation and benefits of this ex vivo culture system in modeling human lung biology and disease pathogenesis.


Assuntos
Asma/patologia , Pulmão/patologia , Pulmão/fisiologia , Pesquisa Translacional Biomédica/métodos , Animais , Asma/fisiopatologia , Humanos , Técnicas de Cultura de Órgãos/métodos
17.
Artigo em Inglês | MEDLINE | ID: mdl-31138566

RESUMO

Surgical site infections (SSIs) are commonly caused by Staphylococcus aureus We report that a combination of three monoclonal antibodies (MEDI6389) that neutralize S. aureus alpha-toxin, clumping factor A, and four leukocidins (LukSF, LukED, HlgAB, and HlgCB) plus vancomycin had enhanced efficacy compared with control antibody plus vancomycin in two mouse models of S. aureus SSI. Therefore, monoclonal antibody-based neutralization of multiple S. aureus virulence factors may provide an adjunctive perioperative approach to combat S. aureus SSIs.


Assuntos
Antibacterianos/farmacologia , Anticorpos Monoclonais/farmacologia , Infecções Estafilocócicas/tratamento farmacológico , Infecção da Ferida Cirúrgica/tratamento farmacológico , Animais , Anticorpos Monoclonais Humanizados/farmacologia , Proteínas de Bactérias/imunologia , Anticorpos Amplamente Neutralizantes/farmacologia , Coagulase/imunologia , Leucocidinas/imunologia , Staphylococcus aureus Resistente à Meticilina/patogenicidade , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Infecções Estafilocócicas/microbiologia , Infecção da Ferida Cirúrgica/microbiologia , Vancomicina/farmacologia
18.
J Clin Invest ; 129(5): 2133-2144, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30985291

RESUMO

Diabetic individuals are at considerable risk for invasive infection by Staphylococcus aureus, however, the mechanisms underlying this enhanced susceptibility to infection are unclear. We observed increased mortality following i.v. S. aureus infection in diabetic mice compared with nondiabetic controls, correlating with increased numbers of low-density neutrophils (LDNs) and neutrophil extracellular traps (NETs). LDNs have been implicated in the inflammatory pathology of diseases such as lupus, given their release of large amounts of NETs. Our goal was to describe what drives LDN increases during S. aureus infection in the diabetic host and mechanisms that promote increased NET production by LDNs. LDN development is dependent on TGF-ß, which we found to be more activated in the diabetic host. Neutralization of TGF-ß, or the TGF-ß-activating integrin αvß8, reduced LDN numbers and improved survival during S. aureus infection. Targeting S. aureus directly with MEDI4893*, an α toxin-neutralizing monoclonal antibody, blocked TGF-ß activation, reduced LDNs and NETs, and significantly improved survival. A comparison of gene and protein expression in high-density neutrophils and LDNs identified increased GPCRs and elevated phosphatase and tensin homolog (PTEN) in the LDN subset. Inhibition of PTEN improved the survival of infected diabetic mice. Our data identify a population of neutrophils in infected diabetic mice that correlated with decreased survival and increased NET production and describe 3 therapeutic targets, a bacterial target and 2 host proteins, that prevented NET production and improved survival.


Assuntos
Anticorpos Monoclonais Humanizados/farmacologia , Anticorpos Amplamente Neutralizantes/farmacologia , Armadilhas Extracelulares/imunologia , Neutrófilos/citologia , Neutrófilos/microbiologia , Infecções Estafilocócicas/imunologia , Staphylococcus aureus , Animais , Separação Celular , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/imunologia , Modelos Animais de Doenças , Feminino , Citometria de Fluxo , Imunoglobulina G/metabolismo , Inflamação , Integrinas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Fatores de Risco , Transdução de Sinais , Infecções Estafilocócicas/complicações , Estreptozocina , Fator de Crescimento Transformador beta/metabolismo
19.
Int J Chron Obstruct Pulmon Dis ; 14: 2611-2624, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32063702

RESUMO

Background: Unlike p38 mitogen-activated protein Kinases (MAPK) that has been extensively studied in the context of lung-associated pathologies in COPD, the role of the dual-specificity mitogen-activated protein kinase kinase (MEK1/2) or its downstream signaling molecule extracellular signal-regulated kinases 1/2 (ERK1/2) in COPD is poorly understood. Objectives: The aim of this study was to address whether MEK1/2 pathway activation is linked to COPD and that targeting this pathway can improve lung inflammation through decreased immune-mediated inflammatory responses without compromising bacterial clearance. Methods: Association of MEK1/2 pathway activation to COPD was investigated by immunohistochemistry using lung tissue biopsies from COPD and healthy individuals and through analysis of sputum gene expression data from COPD patients. The anti-inflammatory effect of MEK1/2 inhibition was assessed on cytokine release from lipopolysaccharide-stimulated alveolar macrophages. The effect of MEK1/2 inhibition on bacterial clearance was assessed using Staphylococcus aureus killing assays with RAW 264.7 macrophage cell line and human neutrophils. Results: We report here MEK1/2 pathway activation demonstrated by increased pERK1/2 staining in bronchial epithelium and by the presence of MEK gene activation signature in sputum samples from COPD patients. Inhibition of MEK1/2 resulted in a superior anti-inflammatory effect in human alveolar macrophages in comparison to a p38 inhibitor. Furthermore, MEK1/2 inhibition led to an increase in bacterial killing in human neutrophils and RAW 264.7 cells that was not observed with the p38 inhibitor. Conclusion: Our data demonstrate the activation of MEK1/2 pathway in COPD and highlight a dual function of MEK1/2 inhibition in improving host defense responses whilst also controlling inflammation.


Assuntos
Benzamidas/farmacologia , Benzamidas/uso terapêutico , Difenilamina/análogos & derivados , MAP Quinase Quinase 1/antagonistas & inibidores , MAP Quinase Quinase 2/antagonistas & inibidores , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Adulto , Idoso , Células Cultivadas , Difenilamina/farmacologia , Difenilamina/uso terapêutico , Feminino , Humanos , Inflamação/tratamento farmacológico , Masculino , Pessoa de Meia-Idade , Doença Pulmonar Obstrutiva Crônica/etiologia , Doença Pulmonar Obstrutiva Crônica/imunologia , Transdução de Sinais/efeitos dos fármacos , Adulto Jovem
20.
Sci Rep ; 8(1): 15228, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30323221

RESUMO

Neutrophils are critical for the defense against pathogens, in part through the extrusion of extracellular DNA traps, phagocytosis, and the production of reactive oxygen species. Neutrophils may also play an important role in the pathogenesis of rheumatoid arthritis (RA) through the activation of protein arginine deiminases (PADs) that citrullinate proteins that subsequently act as autoantigens. We report that PAD4 is physically associated with the cytosolic subunits of the oxidative burst machinery, p47phox (also known as neutrophil cytosol factor 1, NCF1) and p67phox (NCF2). Activation of PAD4 by membranolytic insults that result in high levels of intracellular calcium (higher than physiological neutrophil activation) leads to rapid citrullination of p47phox/NCF1 and p67phox/NCF2, as well as their dissociation from PAD4. This dissociation prevents the assembly of an active NADPH oxidase complex and an oxidative burst in neutrophils stimulated by phorbol-ester or immune complexes. In further support of a substrate-to-inactive enzyme interaction, small-molecule PAD inhibitors also disrupt the PAD4-NCF complex and reduce oxidase activation and phagocytic killing of Staphylococcus aureus. This novel role of PAD4 in the regulation of neutrophil physiology suggests that targeting PAD4 with active site inhibitors for the treatment of RA may have a broader impact on neutrophil biology than just inhibition of citrullination.


Assuntos
Artrite Reumatoide/genética , NADPH Oxidases/genética , Desiminases de Arginina em Proteínas/genética , Artrite Reumatoide/metabolismo , Artrite Reumatoide/patologia , Membrana Celular/genética , Citrulinação/genética , Citosol/metabolismo , Humanos , Neutrófilos/enzimologia , Neutrófilos/patologia , Fagócitos/metabolismo , Fagocitose/genética , Proteína-Arginina Desiminase do Tipo 4 , Espécies Reativas de Oxigênio/metabolismo , Explosão Respiratória/genética , Staphylococcus aureus/metabolismo , Staphylococcus aureus/patogenicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...