Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
Nat Biotechnol ; 42(2): 187-189, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38287161
2.
Mol Ther Methods Clin Dev ; 30: 246-258, 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37545481

RESUMO

Duchenne muscular dystrophy (DMD) is a disease with a life-threatening trajectory resulting from mutations in the dystrophin gene, leading to degeneration of skeletal muscle and fibrosis of cardiac muscle. The overwhelming majority of mutations are multiexonic deletions. We previously established a dystrophic mouse model with deletion of exons 52-54 in Dmd that develops an early-onset cardiac phenotype similar to DMD patients. Here we employed CRISPR-Cas9 delivered intravenously by adeno-associated virus (AAV) vectors to restore functional dystrophin expression via excision or skipping of exon 55. Exon skipping with a solitary guide significantly improved editing outcomes and dystrophin recovery over dual guide excision. Some improvements to genomic and transcript editing levels were observed when the guide dose was enhanced, but dystrophin restoration did not improve considerably. Editing and dystrophin recovery were restricted primarily to cardiac tissue. Remarkably, our exon skipping approach completely prevented onset of the cardiac phenotype in treated mice up to 12 weeks. Thus, our results demonstrate that intravenous delivery of a single-cut CRISPR-Cas9-mediated exon skipping therapy can prevent heart dysfunction in DMD in vivo.

3.
Paediatr Child Health ; 28(4): 205-245, 2023 Jul.
Artigo em Inglês, Inglês | MEDLINE | ID: mdl-37287475

RESUMO

In the past decade, there have been tremendous advancements in the field of genomics that have led to significant progress in redefining the concept of precision medicine. Pharmacogenetics (PGx) is one of the most promising areas of precision medicine and is the 'low hanging fruit' of this individualized approach to medication dosing and selection. Although a variety of regulatory health agencies and professional consortia have established PGx clinical practice guidelines, implementation has been slow given numerous barriers faced by health care professionals. Many lack the training needed to interpret PGx and there are no paediatric specific guidelines. As the field of PGx continues to grow, an emphasis on collaborative inter-professional education, coupled with ongoing efforts to increase accessibility to advancing testing technology are necessary to translate this branch of precision medicine from the bench to the bedside.

4.
Front Immunol ; 14: 1183273, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37275873

RESUMO

Introduction: Humans with gain-of-function (GOF) mutations in STAT1 (Signal Transducer and Activator of Transcription 1), a potent immune regulator, experience frequent infections. About one-third, especially those with DNA-binding domain (DBD) mutations such as T385M, also develop autoimmunity, sometimes accompanied by increases in T-helper 1 (Th1) and T-follicular helper (Tfh) CD4 effector T cells, resembling those that differentiate following infection-induced STAT1 signaling. However, environmental and molecular mechanisms contributing to autoimmunity in STAT1 GOF patients are not defined. Methods: We generated Stat1T385M/+ mutant mice to model the immune impacts of STAT1 DBD GOF under specific-pathogen free (SPF) conditions. Results: Stat1T385M/+ lymphocytes had more total Stat1 at baseline and also higher amounts of IFNg-induced pStat1. Young mutants exhibited expansion of Tfh-like cells, while older mutants developed autoimmunity accompanied by increased Tfh-like cells, B cell activation and germinal center (GC) formation. Mutant females exhibited these immune changes sooner and more robustly than males, identifying significant sex effects of Stat1T385M-induced immune dysregulation. Single cell RNA-Seq (scRNA-Seq) analysis revealed that Stat1T385M activated transcription of GC-associated programs in both B and T cells. However, it had the strongest transcriptional impact on T cells, promoting aberrant CD4 T cell activation and imparting both Tfh-like and Th1-like effector programs. Discussion: Collectively, these data demonstrate that in the absence of overt infection, Stat1T385M disrupted naïve CD4 T cell homeostasis and promoted expansion and differentiation of abnormal Tfh/Th1-like helper and GC-like B cells, eventually leading to sex-biased autoimmunity, suggesting a model for STAT1 GOF-induced immune dysregulation and autoimmune sequelae in humans.


Assuntos
Autoimunidade , Linfócitos T CD4-Positivos , Masculino , Feminino , Humanos , Animais , Camundongos , Autoimunidade/genética , Mutação com Ganho de Função , Mutação , Linfócitos T Auxiliares-Indutores , Fator de Transcrição STAT1/genética
5.
Hum Gene Ther ; 34(9-10): 388-403, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37119122

RESUMO

Muscular dystrophies (MDs) comprise a diverse group of inherited disorders characterized by progressive muscle loss and weakness. Given the genetic etiology underlying MDs, researchers have explored the potential of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) genome editing as a therapeutic intervention, resulting in significant advances. Here, we review recent progress on the use of CRISPR/Cas9 genome editing as a potential therapy for MDs. Significant strides have been made in this realm, made possible through innovative techniques such as precision genetic editing by modified forms of CRISPR/Cas9. These approaches have shown varying degrees of success in animal models of MD, including Duchenne MD, congenital muscular dystrophy type 1A, and myotonic dystrophy type 1. Even so, there are several challenges facing the development of CRISPR/Cas9-based MD therapies, including the targeting of satellite cells, improved editing efficiency in skeletal and cardiac muscle tissue, delivery vehicle enhancements, and the host immunogenic response. Although more work is needed to advance CRISPR/Cas9 genome editing past the preclinical stages, its therapeutic potential for MD is extremely promising and justifies concentrated efforts to move into clinical trials.


Assuntos
Edição de Genes , Distrofia Muscular de Duchenne , Animais , Edição de Genes/métodos , Sistemas CRISPR-Cas , Distrofia Muscular de Duchenne/genética , Terapia Genética/métodos , Distrofina/genética
6.
Pediatr Res ; 93(4): 905-910, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36167815

RESUMO

BACKGROUND: Children with medical complexity (CMC) are a priority pediatric population, with high resource use and associated costs. Genome-wide sequencing is increasingly organized for CMC early in life as a diagnostic test. Polypharmacy becomes common as CMC age. Clinically relevant pharmacogenetic (PGx) information can be extracted from existing genome sequencing (GS) data via GS-PGx profiling. The role of GS-PGx profiling in the CMC population is unclear. METHODS: Prescribed medications were extracted from care plans of 802 eligible CMC enrolled in a structured Complex Care Program over a 10-year period. Drug-gene associations were annotated using curated Clinical Pharmacogenetics Implementation Consortium data. GS-PGx profiling was then performed for a subset of 50 CMC. RESULTS: Overall, 546 CMC (68%) were prescribed at least one medication with an established PGx association. In the GS-PGx subgroup, 24 (48%) carried variants in pharmacogenes with drug-gene guidelines for one or more of their current medications. All had findings of potential relevance to some medications, including 32 (64%) with variants in CYP2C19 that could affect their metabolism of proton-pump inhibitors. CONCLUSION: GS-PGx profiling at the time of diagnostics-focused genetic testing could be an efficient way to incorporate precision prescribing practices into the lifelong care of CMC. IMPACT: Polypharmacy and genetic test utilization are both common in children with medical complexity. The role of repurposing genome sequencing data for pharmacogenetic profiling in children with medical complexity was previously unclear. We identified a high rate of medication use with clinically relevant drug-gene associations in this priority pediatric population and demonstrated that relevant pharmacogenetic information can be extracted from their existing genome sequencing data. Pharmacogenetic profiling at the time of diagnostics-focused genetic testing could be an efficient way to incorporate precision prescribing practices into the lifelong care of children with medical complexity.


Assuntos
Testes Genéticos , Farmacogenética , Criança , Humanos , Mapeamento Cromossômico
7.
JAMA Neurol ; 79(4): 405-413, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35254387

RESUMO

IMPORTANCE: Infants with hypotonia can present with a variety of potentially severe clinical signs and symptoms and often require invasive testing and multiple procedures. The wide range of clinical presentations and potential etiologies leaves diagnosis and prognosis uncertain, underscoring the need for rapid elucidation of the underlying genetic cause of disease. OBSERVATIONS: The clinical application of exome sequencing or genome sequencing has dramatically improved the timely yield of diagnostic testing for neonatal hypotonia, with diagnostic rates of greater than 50% in academic neonatal intensive care units (NICUs) across Australia, Canada, the UK, and the US, which compose the International Precision Child Health Partnership (IPCHiP). A total of 74% (17 of 23) of patients had a change in clinical care in response to genetic diagnosis, including 2 patients who received targeted therapy. This narrative review discusses the common causes of neonatal hypotonia, the relative benefits and limitations of available testing modalities used in NICUs, and hypotonia management recommendations. CONCLUSIONS AND RELEVANCE: This narrative review summarizes the causes of neonatal hypotonia and the benefits of prompt genetic diagnosis, including improved prognostication and identification of targeted treatments which can improve the short-term and long-term outcomes. Institutional resources can vary among different NICUs; as a result, consideration should be given to rule out a small number of relatively unique conditions for which rapid targeted genetic testing is available. Nevertheless, the consensus recommendation is to use rapid genome or exome sequencing as a first-line testing option for NICU patients with unexplained hypotonia. As part of the IPCHiP, this diagnostic experience will be collected in a central database with the goal of advancing knowledge of neonatal hypotonia and improving evidence-based practice.


Assuntos
Unidades de Terapia Intensiva Neonatal , Hipotonia Muscular , Criança , Consenso , Testes Genéticos/métodos , Humanos , Lactente , Recém-Nascido , Estudos Multicêntricos como Assunto , Hipotonia Muscular/diagnóstico , Hipotonia Muscular/genética , Sequenciamento do Exoma/métodos
8.
Nat Biotechnol ; 40(6): 885-895, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35190686

RESUMO

High-throughput functional characterization of genetic variants in their endogenous locus has so far been possible only with methods that rely on homology-directed repair, which are limited by low editing efficiencies. Here, we adapted CRISPR prime editing for high-throughput variant classification and combined it with a strategy that allows for haploidization of any locus, which simplifies variant interpretation. We demonstrate the utility of saturation prime editing (SPE) by applying it to the NPC intracellular cholesterol transporter 1 gene (NPC1), mutations in which cause the lysosomal storage disorder Niemann-Pick disease type C. Our data suggest that NPC1 is very sensitive to genetic perturbation, with 410 of 706 assayed missense mutations being classified as deleterious, and that the derived function score of variants is reflective of diverse molecular defects. We further applied our approach to the BRCA2 gene, demonstrating that SPE is translatable to other genes with an appropriate cellular assay. In sum, we show that SPE allows for efficient, accurate functional characterization of genetic variants.


Assuntos
Proteína C1 de Niemann-Pick , Doença de Niemann-Pick Tipo C , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Mutação/genética , Proteína C1 de Niemann-Pick/genética , Doença de Niemann-Pick Tipo C/genética
9.
J Genet Couns ; 31(2): 523-533, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34674352

RESUMO

Genome sequencing (GS) has demonstrated high diagnostic yield in pediatric patients with complex, clinically heterogeneous presentations. Emerging evidence shows generally favorable experiences for patients and families receiving GS. As a result, implementation of GS in pediatrics is gaining momentum. To inform implementation, we conducted a qualitative study to explore the personal utility of GS for parents of children with medical complexity (CMC). GS was performed at an academic tertiary-care center for CMC for whom a genetic etiology was suspected. Following the return of GS results, semi-structured interviews were conducted with 14 parents about their child's diagnostic journey. Of the children whose parents were interviewed, six children received a diagnosis, two received a possible diagnosis, and six did not receive a diagnosis. A predominantly deductive thematic analysis approach to the interview data was used by applying Kohler's personal utility framework to understand affective, cognitive, behavioral and social impacts of GS. Both the diagnosed and undiagnosed groups experienced enhanced emotion-focused coping (affective). The diagnosed group experienced favorable utility related to knowledge of condition (cognitive) and communication with relatives (behavioral). A domain beyond Kohler's framework related to the presence or absence of GS impact on medical management was also described by parents. The deployment of GS late in the diagnostic odyssey and the limited knowledge available for the rare genetic disorders diagnosed in this cohort appeared to diminish the perceived utility of GS. As GS capabilities continue to evolve at a rapid pace and become available earlier in the diagnostic journey, it is important to consider the impact and timing of testing on parents of CMC.


Assuntos
Comunicação , Pais , Sequência de Bases , Criança , Humanos , Pais/psicologia , Pesquisa Qualitativa , Doenças Raras
11.
ACS Appl Mater Interfaces ; 13(49): 58352-58368, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34873903

RESUMO

Developing safe and effective strategies to deliver biomolecules such as oligonucleotides and proteins into cells has grown in importance over recent years, with an increasing demand for non-viral methods that enable clinical translation. Here, we investigate uniquely configured oligo-urethane nanoparticles based on synthetic chemistries that minimize the release of pro-inflammatory biomarkers from immune cells, show low cytotoxicity in a broad range of cells, and efficiently deliver oligonucleotides and proteins into mammalian cells. The mechanism of cell uptake for the self-assembled oligo-urethane nanoparticles was shown to be directed by caveolae-dependent endocytosis in murine myoblasts (C2C12) cells. Inhibiting caveolae functions with genistein and methyl-ß-cyclodextrin limited nanoparticle internalization. The nanoparticles showed a very high delivery efficiency for the genetic material (a 47-base oligonucleotide) (∼80% incorporation into cells) as well as the purified protein (full length firefly luciferase, 67 kDa) into human embryonic kidney (HEK293T) cells. Luciferase enzyme activity in HEK293T cells demonstrated that intact and functional proteins could be delivered and showed a significant extension of activity retention up to 24 h, well beyond the 2 h half-life of the free enzyme. This study introduces a novel self-assembled oligo-urethane nanoparticle delivery platform with very low associated production costs, enabled by their scalable chemistry (the benchwork cost is $ 0.152/mg vs $ 974.6/mg for typical lipid carriers) that has potential to deliver both oligonucleotides and proteins for biomedical purposes.


Assuntos
Materiais Biocompatíveis/química , Sistemas de Liberação de Medicamentos , Nanopartículas/química , Oligonucleotídeos/química , Animais , Materiais Biocompatíveis/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Células HEK293 , Humanos , Luciferases/metabolismo , Teste de Materiais , Camundongos , Estrutura Molecular , Oligonucleotídeos/genética , Oligonucleotídeos/farmacologia
12.
CMAJ Open ; 9(4): E929-E939, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34642255

RESUMO

BACKGROUND: Health care workers have a critical role in the pandemic response to COVID-19 and may be at increased risk of infection. The objective of this study was to assess the seroprevalence of SARS-CoV-2 immunoglobulin G (IgG) antibodies among health care workers during and after the first wave of the pandemic. METHODS: We conducted a prospective multicentre cohort study involving health care workers in Ontario, Canada, to detect IgG antibodies against SARS-CoV-2. Blood samples and self-reported questionnaires were obtained at enrolment, at 6 weeks and at 12 weeks. A community hospital, tertiary care pediatric hospital and a combined adult-pediatric academic health centre enrolled participants from Apr. 1 to Nov. 13, 2020. Predictors of seropositivity were evaluated using a multivariable logistic regression, adjusted for clustering by hospital site. RESULTS: Among the 1062 health care workers participating, the median age was 40 years, and 834 (78.5%) were female. Overall, 57 (5.4%) were seropositive at any time point (2.5% when participants with prior infection confirmed by polymerase chain reaction testing were excluded). Seroprevalence was higher among those who had a known unprotected exposure to a patient with COVID-19 (p < 0.001) and those who had been contacted by public health because of a nonhospital exposure (p = 0.003). Providing direct care to patients with COVID-19 or working on a unit with a COVID-19 outbreak was not associated with higher seroprevalence. In multivariable logistic regression, presence of symptomatic contacts in the household was the strongest predictor of seropositivity (adjusted odds ratio 7.15, 95% confidence interval 5.42-9.41). INTERPRETATION: Health care workers exposed to household risk factors were more likely to be seropositive than those not exposed, highlighting the need to emphasize the importance of public health measures both inside and outside of the hospital.


Assuntos
Anticorpos Antivirais/sangue , COVID-19/imunologia , Pessoal de Saúde/estatística & dados numéricos , SARS-CoV-2/imunologia , Adulto , COVID-19/diagnóstico , COVID-19/epidemiologia , COVID-19/transmissão , Estudos de Coortes , Feminino , Humanos , Imunoglobulina G/sangue , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Exposição Ocupacional/estatística & dados numéricos , Ontário/epidemiologia , Estudos Prospectivos , Fatores de Risco , SARS-CoV-2/genética , Estudos Soroepidemiológicos , Centros de Atenção Terciária
14.
Ophthalmic Genet ; 42(5): 624-630, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33985410

RESUMO

BACKGROUND: Since bi-allelic variants in the PXDN gene were first discovered in 2011 to be associated with anterior segment dysgenesis, a spectrum of ophthalmologic and systemic clinical manifestations has been described. This manuscript reports two distinct clinical phenotypes in monozygotic twin sisters, including the previously unreported ocular manifestation of bilateral primary aphakia, associated with novel compound heterozygous variants in the PXDN gene. MATERIALS AND METHODS: We used genome sequencing to study a non-consanguineous family with monozygotic twin sister probands: one presenting with bilateral microphthalmia, primary aphakia, total corneal opacification, congenital glaucoma, and complex systemic comorbidities; the other with anterior persistent fetal vasculature in the right eye, and Peters anomaly type 2 with cataract and iris coloboma in the left eye but no systemic issues. These findings were compared to published reports of PXDN-related ocular diseases upon comprehensive review of prior literature. RESULTS: In both affected sisters, genome sequencing identified two novel heterozygous variants in trans in the PXDN gene: c.1569_1570insT, predicting p.(Thr524TyrfsTer53), and c.3206 C > A, predicting p.(Ala1069Asp), respectively. No other potentially diagnostic variants were identified in any other genes. CONCLUSIONS: This report on two novel compound heterozygous variants in the PXDN gene associated with previously unreported clinical manifestations further expands the genotypic and phenotypic spectrum associated with this gene. Our finding of distinctive clinical phenotypes associated with identical compound heterozygous PXDN variants in monozygotic twins emphasizes the significant clinical variability that can occur, suggesting a potential role for stochastic developmental and/or epigenetic factors in the ultimate pathophysiologic pathway.


Assuntos
Doenças em Gêmeos/genética , Anormalidades do Olho/genética , Mutação da Fase de Leitura , Peroxidases/genética , Gêmeos Monozigóticos/genética , Criança , Feminino , Idade Gestacional , Implantes para Drenagem de Glaucoma , Heterozigoto , Humanos , Cristalino/cirurgia , Linhagem , Fenótipo , Trabeculectomia , Sequenciamento Completo do Genoma
15.
NPJ Genom Med ; 6(1): 34, 2021 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-33990617

RESUMO

Signal transducer and activator of transcription 1 (STAT1) gain-of-function (GOF) is an autosomal dominant immune disorder marked by wide infectious predisposition, autoimmunity, vascular disease, and malignancy. Its molecular hallmark, elevated phospho-STAT1 (pSTAT1) following interferon (IFN) stimulation, is seen consistently in all patients and may not fully account for the broad phenotypic spectrum associated with this disorder. While over 100 mutations have been implicated in STAT1 GOF, genotype-phenotype correlation remains limited, and current overexpression models may be of limited use in gene expression studies. We generated heterozygous mutants in diploid HAP1 cells using CRISPR/Cas9 base-editing, targeting the endogenous STAT1 gene. Our models recapitulated the molecular phenotype of elevated pSTAT1, and were used to characterize the expression of five IFN-stimulated genes under a number of conditions. At baseline, transcriptional polarization was evident among mutants compared with wild type, and this was maintained following prolonged serum starvation. This suggests a possible role for unphosphorylated STAT1 in the pathogenesis of STAT1 GOF. Following stimulation with IFNα or IFNγ, differential patterns of gene expression emerged among mutants, including both gain and loss of transcriptional function. This work highlights the importance of modeling heterozygous conditions, and in particular transcription factor-related disorders, in a manner which accurately reflects patient genotype and molecular signature. Furthermore, we propose a complex and multifactorial transcriptional profile associated with various STAT1 mutations, adding to global efforts in establishing STAT1 GOF genotype-phenotype correlation and enhancing our understanding of disease pathogenesis.

16.
EMBO Mol Med ; 13(5): e13228, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33724658

RESUMO

Tandem duplication mutations are increasingly found to be the direct cause of many rare heritable diseases, accounting for up to 10% of cases. Unfortunately, animal models recapitulating such mutations are scarce, limiting our ability to study them and develop genome editing therapies. Here, we describe the generation of a novel duplication mouse model, harboring a multi-exonic tandem duplication in the Dmd gene which recapitulates a human mutation. Duplication correction of this mouse was achieved by implementing a single-guide RNA (sgRNA) CRISPR/Cas9 approach. This strategy precisely removed a duplication mutation in vivo, restored full-length dystrophin expression, and was accompanied by improvements in both histopathological and clinical phenotypes. We conclude that CRISPR/Cas9 represents a powerful tool to accurately model and treat tandem duplication mutations. Our findings will open new avenues of research for exploring the study and therapeutics of duplication disorders.


Assuntos
Distrofina , Distrofia Muscular de Duchenne , Animais , Sistemas CRISPR-Cas , Distrofina/genética , Edição de Genes , Camundongos , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/terapia , RNA Guia de Cinetoplastídeos
17.
Dis Model Mech ; 13(9)2020 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-32988972

RESUMO

Duchenne muscular dystrophy (DMD) is a life-threatening neuromuscular disease caused by the lack of dystrophin, resulting in progressive muscle wasting and locomotor dysfunctions. By adulthood, almost all patients also develop cardiomyopathy, which is the primary cause of death in DMD. Although there has been extensive effort in creating animal models to study treatment strategies for DMD, most fail to recapitulate the complete skeletal and cardiac disease manifestations that are presented in affected patients. Here, we generated a mouse model mirroring a patient deletion mutation of exons 52-54 (Dmd Δ52-54). The Dmd Δ52-54 mutation led to the absence of dystrophin, resulting in progressive muscle deterioration with weakened muscle strength. Moreover, Dmd Δ52-54 mice present with early-onset hypertrophic cardiomyopathy, which is absent in current pre-clinical dystrophin-deficient mouse models. Therefore, Dmd Δ52-54 presents itself as an excellent pre-clinical model to evaluate the impact on skeletal and cardiac muscles for both mutation-dependent and -independent approaches.


Assuntos
Cardiomiopatias/genética , Distrofina/genética , Éxons/genética , Deleção de Genes , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/patologia , Animais , Sequência de Bases , Sistemas CRISPR-Cas/genética , Cardiomegalia/complicações , Cardiomegalia/fisiopatologia , Cardiomiopatias/complicações , Cardiomiopatias/fisiopatologia , Modelos Animais de Doenças , Distroglicanas/metabolismo , Feminino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Força Muscular , Músculo Esquelético/patologia , Músculo Esquelético/fisiopatologia , Distrofia Muscular de Duchenne/complicações , Distrofia Muscular de Duchenne/fisiopatologia , Sarcolema/metabolismo , Taquicardia/complicações , Taquicardia/fisiopatologia
18.
JAMA Netw Open ; 3(9): e2018109, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32960281

RESUMO

Importance: Children with medical complexity (CMC) represent a growing population in the pediatric health care system, with high resource use and associated health care costs. A genetic diagnosis can inform prognosis, anticipatory care, management, and reproductive planning. Conventional genetic testing strategies for CMC are often costly, time consuming, and ultimately unsuccessful. Objective: To evaluate the analytical and clinical validity of genome sequencing as a comprehensive diagnostic genetic test for CMC. Design, Setting, and Participants: In this cohort study of the prospective use of genome sequencing and comparison with standard-of-care genetic testing, CMC were recruited from May 1, 2017, to November 30, 2018, from a structured complex care program based at a tertiary care pediatric hospital in Toronto, Canada. Recruited CMC had at least 1 chronic condition, technology dependence (child is dependent at least part of each day on mechanical ventilators, and/or child requires prolonged intravenous administration of nutritional substances or drugs, and/or child is expected to have prolonged dependence on other device-based support), multiple subspecialist involvement, and substantial health care use. Review of the care plans for 545 CMC identified 143 suspected of having an undiagnosed genetic condition. Fifty-four families met inclusion criteria and were interested in participating, and 49 completed the study. Probands, similarly affected siblings, and biological parents were eligible for genome sequencing. Exposures: Genome sequencing was performed using blood-derived DNA from probands and family members using established methods and a bioinformatics pipeline for clinical genome annotation. Main Outcomes and Measures: The primary study outcome was the diagnostic yield of genome sequencing (proportion of CMC for whom the test result yielded a new diagnosis). Results: Genome sequencing was performed for 138 individuals from 49 families of CMC (29 male and 20 female probands; mean [SD] age, 7.0 [4.5] years). Genome sequencing detected all genomic variation previously identified by conventional genetic testing. A total of 15 probands (30.6%; 95% CI 19.5%-44.6%) received a new primary molecular genetic diagnosis after genome sequencing. Three individuals had novel diseases and an additional 9 had either ultrarare genetic conditions or rare genetic conditions with atypical features. At least 11 families received diagnostic information that had clinical management implications beyond genetic and reproductive counseling. Conclusions and Relevance: This study suggests that genome sequencing has high analytical and clinical validity and can result in new diagnoses in CMC even in the setting of extensive prior investigations. This clinical population may be enriched for ultrarare and novel genetic disorders. Genome sequencing is a potentially first-tier genetic test for CMC.


Assuntos
Testes Genéticos/estatística & dados numéricos , Transtornos Somatoformes/diagnóstico , Sequenciamento Completo do Genoma/estatística & dados numéricos , Canadá , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Valor Preditivo dos Testes , Estudos Prospectivos , Reprodutibilidade dos Testes
19.
Genet Med ; 22(10): 1598-1605, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32461667

RESUMO

PURPOSE: Pathogenic autosomal recessive variants in CAD, encoding the multienzymatic protein initiating pyrimidine de novo biosynthesis, cause a severe inborn metabolic disorder treatable with a dietary supplement of uridine. This condition is difficult to diagnose given the large size of CAD with over 1000 missense variants and the nonspecific clinical presentation. We aimed to develop a reliable and discerning assay to assess the pathogenicity of CAD variants and to select affected individuals that might benefit from uridine therapy. METHODS: Using CRISPR/Cas9, we generated a human CAD-knockout cell line that requires uridine supplements for survival. Transient transfection of the knockout cells with recombinant CAD restores growth in absence of uridine. This system determines missense variants that inactivate CAD and do not rescue the growth phenotype. RESULTS: We identified 25 individuals with biallelic variants in CAD and a phenotype consistent with a CAD deficit. We used the CAD-knockout complementation assay to test a total of 34 variants, identifying 16 as deleterious for CAD activity. Combination of these pathogenic variants confirmed 11 subjects with a CAD deficit, for whom we describe the clinical phenotype. CONCLUSIONS: We designed a cell-based assay to test the pathogenicity of CAD variants, identifying 11 CAD-deficient individuals who could benefit from uridine therapy.


Assuntos
Aspartato Carbamoiltransferase , Carbamoil Fosfato Sintase (Glutamina-Hidrolizante) , Linhagem Celular , Di-Hidro-Orotase , Humanos , Uridina
20.
Am J Hum Genet ; 106(2): 143-152, 2020 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-32032513

RESUMO

Advances in genomics have transformed our ability to identify the genetic causes of rare diseases (RDs), yet we have a limited understanding of the mechanistic roles of most genes in health and disease. When a novel RD gene is first discovered, there is minimal insight into its biological function, the pathogenic mechanisms of disease-causing variants, and how therapy might be approached. To address this gap, the Canadian Rare Diseases Models and Mechanisms (RDMM) Network was established to connect clinicians discovering new disease genes with Canadian scientists able to study equivalent genes and pathways in model organisms (MOs). The Network is built around a registry of more than 500 Canadian MO scientists, representing expertise for over 7,500 human genes. RDMM uses a committee process to identify and evaluate clinician-MO scientist collaborations and approve 25,000 Canadian dollars in catalyst funding. To date, we have made 85 clinician-MO scientist connections and funded 105 projects. These collaborations help confirm variant pathogenicity and unravel the molecular mechanisms of RD, and also test novel therapies and lead to long-term collaborations. To expand the impact and reach of this model, we made the RDMM Registry open-source, portable, and customizable, and we freely share our committee structures and processes. We are currently working with emerging networks in Europe, Australia, and Japan to link international RDMM networks and registries and enable matches across borders. We will continue to create meaningful collaborations, generate knowledge, and advance RD research locally and globally for the benefit of patients and families living with RD.


Assuntos
Modelos Animais de Doenças , Marcadores Genéticos , Doenças Raras/genética , Doenças Raras/terapia , Sistema de Registros/normas , Animais , Bases de Dados Factuais , Genômica , Humanos , Doenças Raras/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...