Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38740683

RESUMO

In the present study, two iron phthalocyanine (FePc)-based nanocatalysts were synthesized and fully characterized. The carbon nanotubes (CNT) functionalized in an easy way with either Fe(II)Pc or Fe(III)Pc exhibit a very good catalytical activity. The activity in real wastewater effluent was comparable with the activity in distilled water. The procedure of modeling and optimizing with the assistance of chemometrics, utilizing design of experiments (DOE) and response surface methodology (RSM), revealed the conditions of optimum for decaying Reactive Yellow 84 on the nanocatalysts FePc_CNT. These optimal conditions included a catalyst dose of 1.70 g/L and an initial concentration (C0) of 20.0 mg/L. Under the indicated optimal conditions, the experimental findings verified that the removal efficiency was equal to Y = 98.92%, representing the highest observed value in this study. Under UVA light, after only 15 min of reaction, over 94% of dye was removed using both catalysts. The reuse experiments show that the activity of both nanohybrid material based on FePc-CNT slightly decreases over four consecutive runs. The quenching experiments show that RY84 was removed through radical pathways (O2•- and •OH) as well as non-radical pathways (1O2 and direct electron transfer).

2.
Materials (Basel) ; 17(4)2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38399041

RESUMO

This study reports a simple and low-cost method for water purification using recyclable natural fibers (coarse wool fibers) as column-filling media for adsorption in the dynamic mode. As an instance of a dissolved organic pollutant, a cationic dye (basic blue 9, BB9) was assayed. According to the Langmuir isotherm (recorded at 300 K), the calculated maximum adsorption capacity of the fibrous material was found to be 24.86 mg/g for the retention of BB9. Response surface methodology (RSM) was employed for the design of experiments and the model-based optimization of the adsorption process performed in the dynamic regime (fixed-bed column). The optimal conditions provided by RSM indicated an adsorbent column height of H = 13.5 cm and a feed flow rate of Fv = 3 mL/min; these operating parameters ensured a color removal efficiency of 92.56% after 240 min of contact time. The recorded breakthrough curve under the optimal conditions was further interpolated using five quantitative mathematical models (Adams-Bohart, Thomas, Yoon-Nelson, Yan, and Clark) to assess the dynamic behaviors in the fixed-bed column. The best goodness-of-fit was achieved for the Thomas and Yoon-Nelson models. Thus, the coarse wool fibers used in a fixed bed demonstrated a relevant efficiency in the removal of cationic organic pollutants from contaminated water.

3.
Gels ; 10(2)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38391416

RESUMO

Currently, ultrashort oligopeptides consisting of fewer than eight amino acids represent a cutting-edge frontier in materials science, particularly in the realm of hydrogel formation. By employing solid-phase synthesis with the Fmoc/tBu approach, a novel pentapeptide, FEYNF-NH2, was designed, inspired by a previously studied sequence chosen from hen egg-white lysozyme (FESNF-NH2). Qualitative peptide analysis was based on reverse-phase high performance liquid chromatography (RP-HPLC), while further purification was accomplished using solid-phase extraction (SPE). Exact molecular ion confirmation was achieved by matrix-assisted laser desorption-ionization mass spectrometry (MALDI-ToF MS) using two different matrices (HCCA and DHB). Additionally, the molecular ion of interest was subjected to tandem mass spectrometry (MS/MS) employing collision-induced dissociation (CID) to confirm the synthesized peptide structure. A combination of research techniques, including Fourier-transform infrared spectroscopy (FTIR), fluorescence analysis, transmission electron microscopy, polarized light microscopy, and Congo red staining assay, were carefully employed to glean valuable insights into the self-assembly phenomena and gelation process of the modified FEYNF-NH2 peptide. Furthermore, molecular docking simulations were conducted to deepen our understanding of the mechanisms underlying the pentapeptide's supramolecular assembly formation and intermolecular interactions. Our study provides potential insights into amyloid research and proposes a novel peptide for advancements in materials science. In this regard, in silico studies were performed to explore the FEYNF peptide's ability to form polyplexes.

4.
Materials (Basel) ; 16(16)2023 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-37629885

RESUMO

New composite materials were prepared via cross-linking of polyethylene glycol/2-hydroxypropyl-ß-cyclodextrins polyrotaxane (PEG/HPßCD) and polyisoprene/HPßCD semi-polyrotaxane (PI/HPßCD SR) with 1,6-hexamethylene diizocyanate (HMDI). Advanced instrumental methods (such WAXS (wide angle X-ray scattering), AFM (atomic force microscopy), SEM (scanning electron microscopy), and thermal and dynamic vapor sorption) were employed for the structural, morphological and thermal characterization of the resulting composite materials. The roughness parameters calculated using AFM indicate a smoother surface for the composite material with 10 wt% of PI/HPßCD SR, denoting that a homogeneous film was obtained. SEM analysis reveals porous morphologies for both composite materials and the pore sizes increase with the increasing concentration of PI/HPßCD SR in the matrix. Dynamic vapor sorption/desorption measurements and type IV isotherms confirmed the hydrophilic and porous materials, which are in agreement with SEM analysis. The composite with a higher PI/HPßCD SR concentration in the matrix showed increased thermal stability than that of the pure cross-linked material. This material was further tested as a sorbent for methylene blue (MB) dye removal from an aqueous solution. The adsorption capacity of the composite film was found to be 2.58 mg g-1 at 25 °C.

5.
Gels ; 9(5)2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37232950

RESUMO

In this work, stabilized ionotropic hydrogels were designed using sodium carboxymethyl cellulose (CMC) and assessed as inexpensive sorbents for hazardous chemicals (e.g., Methylene Blue, MB) from contaminated wastewaters. In order to increase the adsorption capacity of the hydrogelated matrix and facilitate its magnetic separation from aqueous solutions, sodium dodecyl sulfate (SDS) and manganese ferrite (MnFe2O4) were introduced into the polymer framework. The morphological, structural, elemental, and magnetic properties of the adsorbents (in the form of beads) were assessed using scanning electron microscopy (SEM), energy-dispersive X-ray analysis, Fourier-transform infrared spectroscopy (FTIR), and a vibrating-sample magnetometer (VSM). The magnetic beads with the best adsorption performance were subjected to kinetic and isotherm studies. The PFO model best describes the adsorption kinetics. A homogeneous monolayer adsorption system was predicted by the Langmuir isotherm model, registering a maximum adsorption capacity of 234 mg/g at 300 K. The calculated thermodynamic parameter values indicated that the investigated adsorption processes were both spontaneous (ΔG < 0) and exothermic (ΔH < 0). The used sorbent can be recovered after immersion in acetone (93% desorption efficiency) and re-used for MB adsorption. In addition, the molecular docking simulations disclosed aspects of the mechanism of intermolecular interaction between CMC and MB by detailing the contributions of the van der Waals (physical) and Coulomb (electrostatic) forces.

6.
Molecules ; 28(10)2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37241872

RESUMO

This study reports the valorization of pistachio shell agricultural waste, aiming to develop an eco-friendly and cost-effective biosorbent for cationic brilliant green (BG) dye adsorption from aqueous media. Pistachio shells were mercerized in an alkaline environment, resulting in the treated adsorbent (PSNaOH). The morphological and structural features of the adsorbent were analyzed using scanning electron microscopy, Fourier transform infrared spectroscopy, and polarized light microscopy. The pseudo-first-order (PFO) kinetic model best described the adsorption kinetics of the BG cationic dye onto PSNaOH biosorbents. In turn, the equilibrium data were best fitted to the Sips isotherm model. The maximum adsorption capacity decreased with temperature (from 52.42 mg/g at 300 K to 46.42 mg/g at 330 K). The isotherm parameters indicated improved affinity between the biosorbent surface and BG molecules at lower temperatures (300 K). The thermodynamic parameters estimated on the basis of the two approaches indicated a spontaneous (ΔG < 0) and exothermic (ΔH < 0) adsorption process. The design of experiments (DoE) and the response surface methodology (RSM) were employed to establish optimal conditions (sorbent dose (SD) = 4.0 g/L and initial concentration (C0) = 10.1 mg/L), yielding removal efficiency of 98.78%. Molecular docking simulations were performed to disclose the intermolecular interactions between the BG dye and lignocellulose-based adsorbent.

7.
Molecules ; 28(8)2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37110637

RESUMO

Herein, we report the synthesis of inclusion complexes (ICs) based on 3,4-ethylenedioxythiophene (EDOT) with permethylated ß-cyclodextrins (TMe-ßCD) and permethylated γ-cyclodextrins (TMe-γCD) host molecules. To prove the synthesis of such ICs, molecular docking simulation, UV-vis titrations in water, 1H-NMR, and H-H ROESY, as well as matrix-assisted laser desorption ionization mass spectroscopy (MALDI TOF MS) and thermogravimetric analysis (TGA) were carried out on each of the EDOT∙TMe-ßCD and EDOT∙TMe-γCD samples. The results of computational investigations reveal the occurrence of hydrophobic interactions, which contribute to the insertion of the EDOT guest inside the macrocyclic cavities and a better binding of the neutral EDOT to TMe-ßCD. The H-H ROESY spectra show correlation peaks between H-3 and H-5 of hosts and the protons of the guest EDOT, suggesting that the EDOT molecule is included inside the cavities. The MALDI TOF MS analysis of the EDOT∙TMe-ßCD solutions clearly reveals the presence of MS peaks corresponding to sodium adducts of the species associated with the complex formation. The IC preparation shows remarkable improvements in the physical properties of EDOT, rendering it a plausible alternative to increasing its aqueous solubility and thermal stability.

8.
Int J Mol Sci ; 24(7)2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-37047409

RESUMO

Neodymium (Nd)-doped ZnO nanostructures with different amounts of Nd were obtained by the electrospinning-calcination method. X-ray diffraction measurements indicated that the prepared nanostructures have a wurtzite structure without undesirable impurities. Nd doping changes the mean crystallite size as well the lattice strain, as proved by Williamson-Hall plots. The ZnO-based nanostructures were tested as photocatalysts for methylene blue (MB) dye and ciprofloxacin (CIP) drug pollutant degradations under visible light irradiation. Corroborating the obtained results, it was found that the reaction rate constant increased almost linearly with the mean crystallite size (from 2.235 × 10-2 to 3.482 × 10-2 min-1) with a variation in the mean crystallite size from 24.2 to 42.1 nm. Furthermore, the best catalyst sample (0.1% Nd-doped ZnO) was used to optimize the photodegradation process of ciprofloxacin, taking into account the pollutant concentration as well as the catalyst dose. The removal efficiency after 120 min was about 100%, with the rate constant of k = 5.291·10-2 min-1 (CIP) and k = 4.780·10-2 min-1 (MB) for the established optimal conditions. Considering the value of the rate constant, the half-life of the reaction (τ1/2 = ln2/k) was evaluated to be about τ1/2 =13 min for CIP and 14.5 min corresponding to MB. Several catalytic cycles were successfully performed without any loss of photocatalytic activity using these nanostructures, demonstrating that the obtained nanostructures have good stability in the leaching processes.


Assuntos
Neodímio , Óxido de Zinco , Óxido de Zinco/química , Conservação dos Recursos Naturais , Ciprofloxacina
9.
Nanomaterials (Basel) ; 13(4)2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36839065

RESUMO

Herein, we report the results of a study on combining adsorption and ultrafiltration in a single-stage process to remove nitrite ions from contaminated water. As adsorbent, a surface-modified nanoclay was employed (i.e., Nanomer® I.28E, containing 25-30 wt. % trimethyl stearyl ammonium). Ultrafiltration experiments were conducted using porous polymeric membranes (Ultracel® 10 kDa). The hybrid process of adsorption-ultrafiltration was modeled and optimized using three computational tools: (1) response surface methodology (RSM), (2) artificial neural network (ANN), and (3) support vector machine (SVM). The optimal conditions provided by machine learning (SVM) were found to be the best, revealing a rejection efficiency of 86.3% and an initial flux of permeate of 185 LMH for a moderate dose of the nanoclay (0.674% w/v). Likewise, a new and more retentive membrane (based on PVDF-HFP copolymer and halloysite (HS) inorganic nanotubes) was produced by the phase-inversion method, characterized by SEM, EDX, AFM, and FTIR techniques, and then tested under optimal conditions. This new composite membrane (PVDF-HFP/HS) with a thickness of 112 µm and a porosity of 75.32% unveiled an enhanced rejection efficiency (95.0%) and a lower initial flux of permeate (28 LMH). Moreover, molecular docking simulations disclosed the intermolecular interactions between nitrite ions and the functional moiety of the organonanoclay.

10.
Pharmaceutics ; 14(12)2022 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-36559331

RESUMO

Two chemical motifs of interest for medicinal chemistry, silatrane as 1-(3-aminopropyl) silatrane (SIL M), and nitro group attached in position 5 to salicylaldehyde, are coupled in a new structure, 1-(3-{[(2-hydroxy-5-nitrophenyl)methylidene]amino}propyl)silatrane (SIL-BS), through an azomethine moiety, also known as a versatile pharmacophore. The high purity isolated compound was structurally characterized by an elemental, spectral, and single crystal X-ray diffraction analysis. Given the structural premises for being a biologically active compound, different specific techniques and protocols have been used to evaluate their in vitro hydrolytic stability in simulated physiological conditions, the cytotoxicity on two cancer cell lines (HepG2 and MCF7), and protein binding ability-with a major role in drug ADME (Absorption, Distribution, Metabolism and Excretion), in parallel with those of the SIL M. While the latter had a good biocompatibility, the nitro-silatrane derivative, SIL-BS, exhibited a higher cytotoxic activity on HepG2 and MCF7 cell lines, performance assigned, among others, to the known capacity of the nitro group to promote a specific cytotoxicity by a "activation by reduction" mechanism. Both compounds exhibited increased bio- and muco-adhesiveness, which can favor an optimized therapeutic effect by increased drug permeation and residence time in tumor location. Additional benefits of these compounds have been demonstrated by their antimicrobial activity on several fungi and bacteria species. Molecular docking computations on Human Serum Albumin (HSA) and MPRO COVID-19 protease demonstrated their potential in the development of new drugs for combined therapy.

11.
Molecules ; 27(23)2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36500656

RESUMO

The specific features of the siloxane bond unify the compounds based on it into a class with its own chemistry and unique combinations of chemical and physical properties. An illustration of their chemical peculiarity is the behavior of 1,3-bis(2-aminoethylaminomethyl)tetramethyldisiloxane (AEAMDS) in the reaction with carbonyl compounds and metal salts, by which we obtain the metal complexes of the corresponding Schiff bases formed in situ. Depending on the reaction conditions, the fragmentation of this compound takes place at the siloxane bond, but, in most cases, it is in the organic moieties in the ß position with respect to the silicon atom. The main compounds that were formed based on the moieties resulting from the splitting of this diamine were isolated and characterized from a structural point of view. Depending on the presence or not of the metal salt in the reaction mixture, these are metal complexes with organic ligands (either dangling or not dangling silanol tails), or organic compounds. Through theoretical calculations, electrons that appear in the structure of the siloxane bond in different contexts and that lead to such fragmentations have been assessed.


Assuntos
Complexos de Coordenação , Complexos de Coordenação/química , Siloxanas/química , Bases de Schiff/química , Ligantes , Elétrons
12.
Materials (Basel) ; 15(21)2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36363150

RESUMO

Herein, we report a new approach for the sulfonation of polyether ether ketone (PEEK) following a shorter path of reaction undertaken at 60 °C under ultrasonication. The application of this method enabled the reduction of the reaction time from several hours to less than one hour, achieving a relevant sulfonation degree. The sulfonated-PEEK (SPEEK) was characterized by advanced chemical and physical instrumental methods. According to 1H-NMR analysis, the degree of sulfonation of the polymer was equal to 70.3%. Advanced microscopy (SEM) showed that the fabricated SPEEK beads (2-4 mm) were porous inside with a log-normal distribution of pore sizes within the range 1.13-151.44 µm. As an application, the SPEEK polymer was tested for the adsorption of a cationic organic pollutant (Methylene blue, MB) from aqueous solutions. The equilibrium studies (isotherms) disclosed maximum adsorption capacities of 217 mg/g, 119 mg/g, and 68 mg/g at temperatures of 323 K, 313 K, and 300 K, respectively. The thermodynamic calculations indicated an endothermic effect (ΔHad = +11.81 kJ/mol) of the investigated adsorption process. The maximum removal efficiency of 99.14% was established by process optimization using the design of experiments strategy and data-driven modeling. Additionally, molecular docking simulations were performed to disclose the mechanism of interaction at the molecular level between the adsorbent (SPEEK) and pollutant.

13.
Membranes (Basel) ; 12(10)2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36295732

RESUMO

Eliminating or at least lessening the pain is a crucial aspect of burns management, as pain can negatively affect mental health and quality of life, and it can also induce a delay on wound healing. In this context, new amphiphilic chitosan 3D porous membranes were developed and investigated as burns therapeutic systems with analgesic effect for delivery of lidocaine as local anesthetic. The highly porous morphology of the membranes and the structural modifications were evidenced by scanning electron microscopy (SEM), energy dispersive X-ray (EDX) analysis and infrared spectroscopy (FTIR). Improved compression mechanical properties, long-term hydrolytic degradation (28 days) evaluation and high swelling capacities (ranging from 8 to 22.6 g/g) indicate an increased capacity of the prepared membranes to absorb physiological fluids (burns exudate). Lidocaine in vitro release efficiency was favored by the decreased content of cross-linking agent (reaching maximum value of 95.24%) and the kinetic data modeling, indicating that lidocaine release occurs by quasi-Fickian diffusion. In addition to the in vitro evaluation of analgesic effect, lidocaine-loaded chitosan membranes were successfully investigated and proved antibacterial activity against most common pathogens in burns infections: Staphylococcus aureus and Methicillin-resistant Staphylococcus aureus.

14.
Molecules ; 27(19)2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36234928

RESUMO

Fluorescence detection is currently one of the commonly used techniques worldwide. Through this work, the preparation and optical properties of an interesting composite material are discussed. It is shown that encapsulating cobalt spinel ferrite (CoFe2O4), obtained by the sol-gel autocombustion method, into poly[diphenyl-co-methyl(H)]silane matrix leads to fluoromagnetic particles (PSCo) with intriguing optical properties. Transmission electron microscopy, combined with energy-dispersive X-ray analysis, showed 500 nm large spherical structures containing a core (around 400 nm in diameter) composed of magnetic ferrite particles, surrounded by a thin layer of semiconductive fluorescent polymer. The as-obtained material exhibited ferrimagnetic properties. The FTIR spectrum confirmed that the Si-H functionality of the polysilane was preserved. UV spectroscopy combined with molecular modeling studies indicated that the magnetic core had a strong influence on the intramolecular electron transitions characteristic of the σ-conjugated polysilane. Further analysis by steady-state fluorescence spectroscopy revealed that the internal magnetic field strongly enhances the polysilane emission. This property will be further investigated in the future in order to develop new detection devices.


Assuntos
Cobalto , Silanos , Cobalto/química , Compostos Férricos , Polímeros
15.
Molecules ; 27(18)2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-36144850

RESUMO

Nowadays, very coarse wool fibers are considered waste biomass and are discarded at random or burned. Therefore, it is of actual interest to valorize coarse wool fibers as utile products. In this sense, we report herein an environmentally-friendly process for the preparation of a new material based on oxidized wool fibers and designed for efficient adsorption of heavy metals from wastewater. The morphology and the structure of the obtained product were characterized by scanning electron microscopy (SEM) coupled with an X-ray energy-dispersive module (EDX) and by Fourier-transform infrared spectroscopy (FTIR). Likewise, the performances of the oxidized wool fibers for the adsorption of heavy metal cations (Cu2+, Cd2+, Pb2+) from aqueous solutions were tested. The adsorption kinetics data were analyzed by applying the pseudo-first-order (PFO) and pseudo-second-order (PSO) kinetic models. The equilibrium of the adsorption process was investigated by using the Freundlich and Langmuir isotherm models. According to the Langmuir isotherms registered at 300 K, the maximum adsorption capacities of the oxidized wool were found to increase from Cu2+ (9.41 mg/g) and Cd2+ (10.42 mg/g) to Pb2+ (30.71 mg/g). Consequently, the removal efficiency of metal ions was found to vary in the range of 96.8-99.7%. The thermodynamic parameters (e.g., enthalpy, entropy, and Gibbs free energy) were calculated and discussed.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Adsorção , Biomassa , Cádmio , Cátions , Concentração de Íons de Hidrogênio , Cinética , Chumbo , Metais Pesados/química , Espectroscopia de Infravermelho com Transformada de Fourier , Termodinâmica , Águas Residuárias/química , Água , Poluentes Químicos da Água/química
16.
Gels ; 8(8)2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-36005096

RESUMO

To avoid fungal spreading in the bloodstream and internal organs, many research efforts concentrate on finding appropriate candidiasis treatment from the initial stage. This paper proposes chitosan-based physically or chemically cross-linked hydrogels aimed to provide sustained release of micronized nystatin (NYSm) antifungal drug, known for its large activity spectrum. Nystatin was demonstrated itself to provide hydrodynamic/mechanic stability to the chitosan hydrogel through hydrophobic interactions and H-bonds. For chemical cross-linking of the succinylated chitosan, a non-toxic diepoxy-functionalized siloxane compound was used. The chemical structure and composition of the hydrogels, also their morphology, were evidenced by infrared spectroscopy (FTIR), by energy dispersive X-ray (EDX) analysis and by scanning electron microscopy (SEM), respectively. The hydrogels presented mechanical properties which mimic those of the soft tissues (elastic moduli < 1 MPa), necessary to ensure matrix accommodation and bioadhesion. Maximum swelling capacities were reached by the hydrogels with higher succinic anhydride content at both pH 7.4 (429%) and pH 4.2 (471%), while higher amounts of nystatin released in the simulative immersion media (57% in acidic pH and 51% in pH 7.4) occurred from the physical cross-linked hydrogel. The release mechanism by non-swellable matrix diffusion and the susceptibility of three Candida strains make all the hydrogel formulations effective for NYSm local delivery and for combating fungal infections.

17.
J Environ Manage ; 316: 115317, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35658261

RESUMO

Titanium dioxide (TiO2)-based nanofibers doped with samarium (Sm3+) and erbium (Er3+) at doping levels tuned in the range of 0.05-1.0% were prepared by the electrospinning-calcination method. The produced materials were well characterized by X-ray diffraction, SEM, EDX, and UV-vis diffuse reflectance spectroscopy. These one-dimensional nanostructures showed a crystalline structure with values of fiber diameters values between 60 and 100 nm. The best catalyst sample of this study was formulated as TiO2:Sm (0.1%) and sintered at 600 °C. And, it was employed to intensify the photocatalytic process under visible-light irradiation. Likewise, the chemometric approach was applied to optimize the process. The results revealed that the rate constant for the photo-degradation of a cationic organic pollutant was significantly improved (k = 3.496 × 10-1 min-1). In terms of the reaction half-life, the intensification and optimization of the process led to a decrease in the half-life of the reaction from 68 to 2 min. And, these are outstanding findings for the photo-degradation process under visible-light irradiation. In addition, the total organic carbon (TOC) removal efficiencies were found to be 69.95% and 72.30% for the mineralization of MB and CIP, respectively, after a 360 min reaction time, which are significant results. Moreover, this material demonstrated remarkable photocatalytic activity for the degradation of ciprofloxacin (CIP) with a 99.6% removal efficiency and a rate constant of 4.292 × 10-1 min-1. Finally, the stability and reusability of this catalyst were demonstrated during five repetitive cycles of the CIP photodegradation.


Assuntos
Nanofibras , Catálise , Luz , Nanofibras/química , Fotólise , Titânio/química
18.
Polymers (Basel) ; 14(4)2022 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-35215602

RESUMO

The paper deals with new approaches to chitosan (CS)-based antifungal therapeutic formulations designed to fulfill the requirements of specific applications. Gel-like formulations were prepared by mixing CS dissolved in aqueous lactic acid (LA) solution with nystatin (NYS) powder and/or propolis (PRO) aqueous solution dispersed in glycerin, followed by water evaporation to yield flexible mesoporous (pore widths of 2-4 nm) films of high specific surfaces between 1 × 103 and 1.7 × 103 m2/g. Morphological evaluation of the antifungal films showed uniform dispersion and downsizing of NYS crystallites (with initial sizes up to 50 µm). Their mechanical properties were found to be close to those of soft tissues (Young's modulus values between 0.044-0.025 MPa). The films presented hydration capacities in physiological condition depending on their composition, i.e., higher for NYS-charged (628%), as compared with PRO loaded films (118-129%). All NYS charged films presented a quick release for the first 10 min followed by a progressive increase of the release efficiency at 48.6%, for the samples containing NYS alone and decreasing values with increasing amount of PRO to 45.9% and 42.8% after 5 h. By in vitro analysis, the hydrogels with acidic pH values around 3.8 were proven to be active against Candida albicans and Candida glabrata species. The time-killing assay performed during 24 h on Candida albicans in synthetic vagina-simulative medium showed that the hydrogel formulations containing both NYS and PRO presented the faster slowing down of the fungal growth, from colony-forming unit (CFU)/mL of 1.24 × 107 to CFU/mL < 10 (starting from the first 6 h).

19.
Chemosphere ; 264(Pt 2): 128465, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33091781

RESUMO

Arthrospira platensis is featured as a promising microalgae candidate for the development of the biosystems for air revitalisation in spacecrafts and life support in space. An enhanced configuration of a sparged type photobioreactor (PBR), containing 5 L of A. platensis culture, which was equipped with an external LED lighting tube around the reactor, was used in this study. The PBR was operated under dynamic conditions (0.5 L/min) with synthetic air containing CO2 (400, 900, 1400 ppm) and other gas traces (NO2 1 ppm, SO2 2.5 ppm, acetic acid vapours 1 ppm), at various light intensities (1.5, 2.5, 3.5 klux), according to an experimental design. The removal of gas traces (NO2, SO2 and acetic acid vapours) was below the detection limit (e.g. above 90% removal efficiency), while the removal of CO2 ranged between 69% and 85%, depending on the initial CO2 concentration and the light intensity. Thus, the system is able to roughly decrease the contaminant concentration from 1 ppm to below 0.1 ppm for NO2, 2.5 ppm to below 0.1 ppm for SO2, 1 ppm to below 1 ppb for acetic acid vapours and from 1400 ppm to 370 or from 400 ppm to 60 ppm for CO2. The system performance was thus subject to mathematical modelling and optimization in terms of CO2 removal efficiency and CO2 elimination capacity, which were also corroborated with the power consumption for illumination.


Assuntos
Astronave , Spirulina , Biomassa , Fotobiorreatores
20.
Spectrochim Acta A Mol Biomol Spectrosc ; 249: 119318, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33360205

RESUMO

Fifteen new 1,10-phenanthrolines disubstituted at positions 2 and 9 via amide bonds with different heterocycles have been designed and synthesized as G-quadruplex DNA stabilizers. Ten compounds were evaluated for the in vitro anticancer activity against 60 human tumor cell lines panel, four of them showing a very good inhibitory activity on several cell lines. To assess the ability of the most active compounds to interact with G-quadruplex DNA (G4-DNA), circular dichroism experiments were performed. The potency of the compounds to stabilize the G4-DNA has been shown from the thermal denaturation experiments. The mechanism of compounds binding to DNA and to G4-DNA was theoretically investigated by molecular docking studies. The experimental results demonstrated excellent capacity of the two compounds bearing two pyridin-3-yl residues (methylated and non-methylated) to act as selective G-quadruplex binders with promising anticancer activity.


Assuntos
Quadruplex G , Dicroísmo Circular , DNA , Humanos , Ligantes , Simulação de Acoplamento Molecular , Fenantrolinas/farmacologia , Telômero
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...