Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(3)2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38591489

RESUMO

To ensure the acceptable mechanical strength of amorphous wollastonitic hydraulic binders (AWHs), activation with a sodium silicate solution is necessary. However, the use of this type of activator increases the final cost and the complexity of the product's overall use. In this work, we focus on enhancing the manufacturing of the alkaline activator by producing three Na2SiO3 powders using cost-effective raw materials. The procedure consisted of heating a mixture of NaOH pebbles with either sand, glass, or diatomite to a temperature of 330 °C for 2 h. After synthesis, the powders were characterized by Fourier Transform Infrared Spectroscopy (FTIR) and X-ray Diffraction (XRD) techniques. Finally, mortars made with AWHs were activated using the synthesized powders that were added either as a solid or dissolved in an aqueous solution. The compressive strength results in these mortars show that the lab-made activators are competitive with the traditional sodium silicate activators. Furthermore, the synthetized activators can be added in either solid form or pre-dissolved in a solution. This innovative approach represents a more economical, sustainable and easy-to-use approach to enhancing the competitiveness of AWHs.

2.
J Phys Chem B ; 128(10): 2559-2568, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38442259

RESUMO

The unique physicochemical properties of ionic liquids (ILs) attracted interest in their application as lubricants of micro/nano-electromechanical systems. This work evaluates the feasibility of using the protic ionic liquids [4-picH][HSO4], [4-picH][CH3SO3], [MIMH][HSO4], and [MIMH][CH3SO3] and the aprotic ILs [C6mim][HSO4] and [C6mim][CH3SO3] as additives to model lubricant poly(ethylene glycol) (PEG200) to lubricate silicon surfaces. Additives based on the cation [4-picH]+ exhibited the best tribological performance, with the optimal value for 2% [4-picH][HSO4] in PEG200 (w/w). Molecular dynamics (MD) simulations of the first stages of adsorption of the ILs at the glass surface were performed to portray the molecular behavior of the ILs added to PEG200 and their interaction with the silica substrate. For the pure ILs at the solid substrates, the MD results indicated that weak specific interactions of the cation with the glass interface are lost to accommodate the larger anion in the first contact layer. For the PEG200 + 2% [4-picH][HSO4] system, the formation of a more compact protective film adsorbed at the glass surface is revealed by a larger trans population of the dihedral angle -O(R)-C-C-O(R)- in PEG200, in comparison to the same distribution for the pure model lubricant. Our findings suggest that the enhanced lubrication performance of PEG200 with [4-picH][HSO4] arises from synergistic interactions between the protic IL and PEG200 at the adsorbed layer.

3.
Materials (Basel) ; 16(13)2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37445188

RESUMO

Because of the severe environmental impact of the CO2 emissions associated with the production of ordinary Portland cement (OPC) and the increasing demand for this commodity material, the development of alternative products has become a global concern. One alternative to OPC, or alitic-based clinkers, are amorphous-wollastonitic low-calcium hydraulic binders (AWLCs). This new class of hydraulic binders, described in the literature for the first time in 2015, may significantly reduce the CO2 emissions associated with its production, resulting from its lower calcium content, but also from the fact that its production technology can be fully electrified. In this paper, a state-of-the-art review is presented, providing a comprehensive description of the latest research, summarizing both the physicochemical and mechanical characteristics of this type of hydraulic binder, as well as possible routes for its production at an industrial scale.

4.
Molecules ; 28(6)2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36985652

RESUMO

The motivation for this work was to develop new protic ionic liquids (PILs) as additives for the lubrication of micro and nanoelectromechanical systems (MEMS and NEMS). Ten PILs based on the combination of methylimidazolium ([MIMH]), 4-picolinium ([4-picH]), pyridinium ([PyrH]), 1,8-diazabicyclo[5.4.0]-undec-7-ene-8-ium ([DBUH]) and tetramethylguanidinium ([TMGH]) cations with hydrogen sulfate([HSO4]) and mesylate ([MeSO3]) anions were tested as additives in polyethylene glycol (PEG200) to lubricate steel/silicon and silicon/silicon contacts. The best additive was [4-picH][HSO4], which adsorbed strongly on the Si surface, leading to a protective film that reduced wear by up to 15 times compared to PEG200.

5.
Materials (Basel) ; 16(5)2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36902976

RESUMO

Zirconia-based materials are widely used in dentistry due to their biocompatibility and suitable mechanical and tribological behavior. Although commonly processed by subtractive manufacturing (SM), alternative techniques are being explored to reduce material waste, energy consumption and production time. 3D printing has received increasing interest for this purpose. This systematic review intends to gather information on the state of the art of additive manufacturing (AM) of zirconia-based materials for dental applications. As far as the authors know, this is the first time that a comparative analysis of these materials' properties has been performed. It was performed following the PRISMA guidelines and using PubMed, Scopus and Web of Science databases to select studies that met the defined criteria without restrictions on publication year. Stereolithography (SLA) and digital light processing (DLP) were the techniques most focused on in the literature and the ones that led to most promising outcomes. However, other techniques, such as robocasting (RC) and material jetting (MJ), have also led to good results. In all cases, the main concerns are centered on dimensional accuracy, resolution, and insufficient mechanical strength of the pieces. Despite the struggles inherent to the different 3D printing techniques, the commitment to adapt materials, procedures and workflows to these digital technologies is remarkable. Overall, the research on this topic can be seen as a disruptive technological progress with a wide range of application possibilities.

6.
Eur J Oper Res ; 309(2): 795-818, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36688141

RESUMO

The COVID-19 pandemic has caused major damage and disruption to social, economic, and health systems (among others). In addition, it has posed unprecedented challenges to public health and policy/decision-makers who have been responsible for designing and implementing measures to mitigate its strong negative impact. The Portuguese health authorities have used decision analysis techniques to assess the impact of the pandemic and implemented measures for counties, regions, or across the entire country. These decision tools have been subject to some criticism and many stakeholders requested novel approaches. In particular, those which considered the dynamic changes in the pandemic's behaviour due to new virus variants and vaccines. A multidisciplinary team formed by researchers from the COVID-19 Committee of Instituto Superior Técnico at the University of Lisbon (CCIST analyst team) and physicians from the Crisis Office of the Portuguese Medical Association (GCOM expert team) collaborated to create a new tool to help politicians and decision-makers to fight the pandemic. This paper presents the main steps that led to the building of a pandemic impact assessment composite indicator applied to the specific case of COVID-19 in Portugal. A multiple criteria approach based on an additive multi-attribute value theory aggregation model was used to build the pandemic assessment composite indicator. The parameters of the additive model were devised based on an interactive socio-technical and co-constructive process between the CCIST and GCOM team members. The deck of cards method was the adopted technical tool to assist in the assessment the value functions as well as in the assessment of the criteria weights. The final tool was presented at a press conference and had a powerful impact on the Portuguese media and on the main health decision-making stakeholders in the country. In this paper, a completed mathematical and graphical description of this tool is presented.

7.
Macromol Biosci ; 23(2): e2200240, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36443994

RESUMO

Cartilage replacement materials exhibiting a set of demanding properties such as high water content, high mechanical stiffness, low friction, and excellent biocompatibility are quite difficult to achieve. Here, poly(p-phenylene-2,6-benzobisoxazole) (PBO) nanofibers are combined with polyvinyl alcohol (PVA) to form a super-strong structure with a performance that surpasses the vast majority of previously existing hydrogels. PVA-PBO composites with water contents in the 59-76% range exhibit tensile and compressive moduli reaching 20.3 and 4.5 MPa, respectively, and a coefficient of friction below 0.08. Further, they are biocompatible and support the viability of chondrocytes for 1 week, with significant improvements in cell adhesion, proliferation, and differentiation compared to PVA. The new composites can be safely sterilized by steam heat or gamma radiation without compromising their integrity and overall performance. In addition, they show potential to be used as local delivery platforms for anti-inflammatory drugs. These attractive features make PVA-PBO composites highly competitive engineered materials with remarkable potential for use in the design of load-bearing tissues. Complementary work has also revealed that these composites will be interesting alternatives in other industrial fields where high thermal and mechanical resistance are essential requirements, or which can take advantage of the pH responsiveness functionality.


Assuntos
Materiais Biocompatíveis , Nanofibras , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/química , Teste de Materiais , Hidrogéis/farmacologia , Hidrogéis/química , Cartilagem , Álcool de Polivinil/farmacologia , Álcool de Polivinil/química , Água/química
8.
J Funct Biomater ; 13(2)2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35735927

RESUMO

Biodegradable metals have been extensively studied due to their potential use as temporary biomedical devices, on non-load bearing applications. These types of implants are requested to function for the healing period, and should degrade after the tissue heals. A balance between mechanical properties requested at the initial stage of implantation and the degradation rate is required. The use of temporary biodegradable implants avoids a second surgery for the removal of the device, which brings high benefits to the patients and avoids high societal costs. Among the biodegradable metals, iron as a biodegradable metal has increased attention over the last few years, especially with the incorporation of additive manufacturing processes to obtain tailored geometries of porous structures, which give rise to higher corrosion rates. Withal by mimic natural bone hierarchical porosity, the mechanical properties of obtained structures tend to equalize that of human bone. This review article presents some of the most important works in the field of iron and porous iron. Fabrication techniques for porous iron are tackled, including conventional and new methods highlighting the unparalleled opportunities given by additive manufacturing. A comparison among the several methods is taken. The effects of the design and the alloying elements on the mechanical properties are also revised. Iron alloys with antibacterial properties are analyzed, as well as the biodegradation behavior and biocompatibility of iron. Although is necessary for further in vivo research, iron is presenting satisfactory results for upcoming biomedical applications, as orthopaedic temporary scaffolds and coronary stents.

9.
Gels ; 8(3)2022 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-35323256

RESUMO

Polyvinyl alcohol (PVA) hydrogels have been widely studied for cartilage replacement due to their biocompatibility, chemical stability, and ability to be modified such that they approximate natural tissue behavior. Additionally, they may also be used with advantages as local drug delivery systems. However, their properties are not yet the most adequate for such applications. This work aimed to develop new PVA-based hydrogels for this purpose, displaying improved tribomechanical properties with the ability to control the release of diclofenac (DFN). Four types of PVA-based hydrogels were prepared via freeze-thawing: PVA, PVA/PAA (by polyacrylic acid (PAA) addition), PVA/PAA+PEG (by polyethylene glycol (PEG) immersion), and PVA/PAA+PEG+A (by annealing). Their morphology, water uptake, mechanical and rheological properties, wettability, friction coefficient, and drug release behavior were accessed. The irritability of the best-performing material was investigated. The results showed that the PAA addition increased the swelling and drug release amount. PEG immersion led to a more compact structure and significantly improved the material's tribomechanical performance. The annealing treatment led to the material with the most suitable properties: besides presenting a low friction coefficient, it further enhanced the mechanical properties and ensured a controlled DFN release for at least 3 days. Moreover, it did not reveal irritability potential for biological tissues.

10.
J Biomed Mater Res B Appl Biomater ; 110(8): 1839-1852, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35226412

RESUMO

Hydrogels are very promising human cartilage replacement materials since they are able to mimic its structure and properties. Besides, they can be used as platforms for drug delivery to reduce inflammatory postsurgical reactions. Polycarbonate urethane (PCU) has been used in orthopedic applications due to its long-term biocompatibility and bio-durability. In this work, PCU-based hydrogels with the ability to release an anti-inflammatory (diclofenac) were developed, for the first time, for such purpose. The materials were reinforced with different amounts of cellulose acetate (CA, 10%, 15%, and 25% w/w) or carbon nanotubes (CNT, 1% and 2% w/w) in order to improve their mechanical properties. Samples were characterized in terms of compressive and tensile mechanical behavior. It was found that 15% CA and 2% CNT reinforcement led to the best mechanical properties. Thus, these materials were further characterized in terms of morphology, wettability, and friction coefficient (CoF). Contrarily to CNTs, the addition of CA significantly increased the material's porosity. Both materials became more hydrophilic, and the CoF slightly increased for PCU + 15%CA. The materials were loaded by soaking with diclofenac, and drug release experiments were conducted. PCU, PCU + 15%CA and PCU + 2%CNT presented similar release profiles, being able to ensure a controlled release of DFN for at least 4 days. Finally, in vitro cytotoxicity tests using human chondrocytes were also performed and confirmed a high biocompatibility for the three studied materials.


Assuntos
Nanotubos de Carbono , Uretana , Cartilagem , Diclofenaco/farmacologia , Humanos , Hidrogéis/química , Nanotubos de Carbono/química , Cimento de Policarboxilato , Uretana/química , Uretana/farmacologia
11.
Materials (Basel) ; 14(18)2021 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-34576569

RESUMO

In this work, the apparent activation energy (Ea) of a novel low-calcium binder was, for the first time, experimentally determined, using a calorimetric approach. Additionally, a correlation between the Ea, measured at the acceleration period with the C/S ratio of the hydration product is proposed. The Ea of the prepared pastes was determined through isothermal calorimetry tests by calculating the specific rate of reaction at different temperatures, using two different approaches. When comparing the Ea, at the acceleration period of this novel binder with the one published for alite and belite, we observed that its value is higher, which may be a result of a different hydration product formed with a distinct C/S ratio. Finally, to study the temperature effect on the compressive strength at early ages, a set of experiments with mortars was performed. The results showed that the longer the curing time at 35 °C, the higher the compressive strength after 2 days of hydration, which suggests a higher initial development of hydration products. This study also indicated that the novel binder has a higher sensitivity to temperature when compared with ordinary Portland cement (OPC).

12.
Biomater Sci ; 9(15): 5359-5382, 2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34223566

RESUMO

Neural tissue engineering strategies are paramount to create fully mature neurons, necessary for new therapeutic strategies for neurological diseases or the creation of reliable in vitro models. Scaffolds can provide physical support for these neurons and enable cues for enhancing neural cell differentiation, such as electrical current. Coaxial electrospinning fibers, designed to fulfill neural cell needs, bring together an electroconductive shell layer (PCL-PANI), able to mediate electrical stimulation of cells cultivated on fibers mesh surface, and a soft core layer (PGS), used to finetune fiber diameter (951 ± 465 nm) and mechanical properties (1.3 ± 0.2 MPa). Those dual functional coaxial fibers are electroconductive (0.063 ± 0.029 S cm-1, stable over 21 days) and biodegradable (72% weigh loss in 12 hours upon human lipase accelerated assay). For the first time, the long-term effects of electrical stimulation on induced neural progenitor cells were studied using such fibers. The results show increase in neural maturation (upregulation of MAP2, NEF-H and SYP), up-regulation of glutamatergic marker genes (VGLUT1 - 15-fold) and voltage-sensitive channels (SCN1α - 12-fold, CACNA1C - 32-fold), and a down-regulation of GABAergic marker (GAD67 - 0.09-fold), as detected by qRT-PCR. Therefore, this study suggest a shift from an inhibitory to an excitatory neural cell profile. This work shows that the PGS/PCL-PANI coaxial fibers here developed have potential applications in neural tissue engineering.


Assuntos
Nanofibras , Estimulação Elétrica , Humanos , Poliésteres , Engenharia Tecidual , Alicerces Teciduais
13.
Mater Sci Eng C Mater Biol Appl ; 120: 111680, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33545842

RESUMO

Replenishing neurons in patients with neurodegenerative diseases is one of the ultimate therapies for these progressive, debilitating and fatal diseases. Electrical stimulation can improve neuron stem cell differentiation but requires a reliable nanopatterned electroconductive substrate. Potential candidate substrates are polycaprolactone (PCL) - polyaniline:camphorsulfonic acid (PANI:CSA) nanofibers, but their nanobiophysical properties need to be finetuned. The present study investigates the use of the pseudo-doping effect on the optimization of the electroconductivity of these polyaniline-based electrospun nanofibers. This was performed by developing a new solvent system that comprises a mixture of hexafluoropropanol (HFP) and trifluoroethanol (TFE). For the first time, an electroconductivity so high as 0.2 S cm-1 was obtained for, obtained from a TFE:HFP 50/50 vol% solution, while maintaining fiber biocompatibility. The physicochemical mechanisms behind these changes were studied. The results suggest HFP promotes changes on PANI chains conformations through pseudo-doping, leading to the observed enhancement in electroconductivity. The consequences of such change in the nanofabrication of PCL-PANI fibers include an increase in fiber diameter (373 ± 172 nm), a decrease in contact angle (42 ± 3°) and a decrease in Young modulus (1.6 ± 0.5 MPa), making these fibers interesting candidates for neural tissue engineering. Electrical stimulation of differentiating neural stem cells was performed using AC electrical current. Positive effects on cell alignment and gene expression (DCX, MAP2) are observed. The novel optimized platform shows promising applications for (1) building in vitro platforms for drug screening, (2) interfaces for deep-brain electrodes; and (3) fully grown and functional neurons transplantation.


Assuntos
Dopagem Esportivo , Nanofibras , Compostos de Anilina , Humanos , Poliésteres , Engenharia Tecidual
14.
Materials (Basel) ; 15(1)2021 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-35009355

RESUMO

Currently, the production of one ton of ordinary Portland cement (OPC) releases considerable amounts of CO2 into the atmosphere. As the need and demand for this material grows exponentially, it has become a challenge to increase its production at a time when climate-related problems represent a major global concern. The two main CO2 contributors in this process are fossil fuel combustion to heat the rotary kiln and the chemical reaction associated with the calcination process, in the production of the clinker, the main component of OPC. The current paper presents a critical review of the existent alternative clinker technologies (ACTs) that are under an investigation trial phase or under restricted use for niche applications and that lead to reduced emissions of CO2. Also, the possibility of transition of clinker production from traditional rotary kilns based on fuel combustion processes to electrification is discussed, since this may lead to the partial or even complete elimination of the CO2 combustion-related emissions, arising from the heating of the clinker kiln.

15.
Nanomaterials (Basel) ; 10(11)2020 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-33202626

RESUMO

In this work, Langmuir films of two highly fluorinated fatty alcohols, CF3(CF2)12CH2OH (F14OH) and CF3(CF2)16CH2OH (F18OH), were studied. Atomic Force Microscopy (AFM) images of the films transferred at zero surface pressure and low surface density onto the surface of silicon wafers by the Langmuir-Blodgett technique revealed, for the first time, the existence of solid-like domains with well-defined mostly hexagonal (starry) shapes in the case of F18OH, and with an entangled structure of threads in the case of F14OH. A (20:80) molar mixture of the two alcohols displayed a surprising combination of the two patterns: hexagonal domains surrounded by zigzagging threads, clearly demonstrating that the two alcohols segregate during the 2D crystallization process. Grazing Incidence X-Ray Diffraction (GIXD) measurements confirmed that the molecules of both alcohols organize in 2D hexagonal lattices. Atomistic Molecular Dynamics (MD) simulations provide a visualization of the structure of the domains and allow a molecular-level interpretation of the experimental observations. The simulation results clearly showed that perfluorinated alcohols have an intrinsic tendency to aggregate, even at very low surface density. The formed domains are highly organized compared to those of hydrogenated alcohols with similar chain length. Very probably, this tendency is a consequence of the characteristic stiffness of the perfluorinated chains. The diffraction spectrum calculated from the simulation trajectories compares favorably with the experimental spectra, fully validating the simulations and the proposed interpretation. The present results highlight for the first time an inherent tendency of perfluorinated chains to aggregate, even at very low surface density, forming highly organized 2D structures. We believe these findings are important to fully understand related phenomena, such as the formation of hemi-micelles of semifluorinated alkanes at the surface of water and the 2D segregation in mixed Langmuir films of hydrogenated and fluorinated fatty acids.

16.
Materials (Basel) ; 13(16)2020 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-32785120

RESUMO

This review focuses on the wear mechanisms of natural and restorative dental materials, presenting a comprehensive description and analysis of the works published in the last two decades on the wear at the interface of occlusal surfaces. Different groups of tribological pairs were considered: tooth-tooth, tooth-restorative material (tooth-ceramic, tooth-resin-based-materials, and tooth-metal), and restorative-restorative materials. The lack of standardization of the wear tests impairs the direct comparison of the obtained results. However, it was possible to infer about the main wear mechanisms observed on the different classes of dental materials. Concerning ceramics, their toughness and surface finishing determines the wear of antagonist tooth. Abrasion revealed to be the main wear mechanisms at occlusal interface. In the case of resin-based composites, the cohesion of the organic matrix and the nature, shape, and amount of filler particles greatly influences the dental wear. The protruding and detachment of the filler particles are the main causes of abrasion of antagonist enamel. Metallic materials induce lower wear on antagonist enamel than the other classes of materials, because of their low hardness and high ductility. Most of the studies revealed plastic deformation and adhesive wear as the main wear mechanisms. Overall, more research in this area is needed for a better understanding of the mechanisms involved at the occlusal surfaces wear. This would be essential for the development of more suitable restoration materials.

17.
J Cataract Refract Surg ; 45(12): 1808-1817, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31856994

RESUMO

PURPOSE: To assess the possibility of using acrylic intraocular lenses (IOLs) to ensure controlled and sustained release of moxifloxacin, an antibiotic commonly used for endophthalmitis prophylaxis after cataract surgery. SETTING: Academic, industrial, and clinical partners from Portugal, Belgium, Iceland, and the United States. DESIGN: Experimental study. METHODS: The physical properties of IOLs loaded with moxifloxacin by soaking were characterized. In vitro drug-release studies were performed under hydrodynamic conditions similar to those of the eye, and the activity of the released drug was tested. In vitro cytotoxicity was evaluated, and the in vivo efficacy of the devices was assessed through rabbit experiments in which the effects of topical moxifloxacin drops (control) and moxifloxacin-loaded IOLs were compared. RESULTS: The presence of moxifloxacin in the IOLs had little effect on the evaluated physical properties and did not induce cytotoxicity. In vitro drug release experiments showed that the IOLs provided controlled release of moxifloxacin for approximately 2 weeks. The drug remained active against the tested microorganisms during that period. Moxifloxacin-loaded IOLs and the control treatment induced similar in vivo behavior in terms of inflammatory reactions, capsular bag opacification scores, and uveal and capsule biocompatibility. The drug concentration in the aqueous humor after 1 week was similar in both groups; however, the concentration with the loaded IOLs was less variable. CONCLUSION: The moxifloxacin-loaded IOLs released the drug in a controlled manner, providing therapeutic levels.


Assuntos
Extração de Catarata/efeitos adversos , Endoftalmite/prevenção & controle , Lentes Intraoculares , Moxifloxacina/farmacologia , Animais , Antibacterianos/farmacologia , Humor Aquoso/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Sistemas de Liberação de Medicamentos , Coelhos
18.
Materials (Basel) ; 12(20)2019 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-31635284

RESUMO

Designing materials for cartilage replacement raises several challenges due to the complexity of the natural tissue and its unique tribomechanical properties. Poly(vinyl alcohol) (PVA) hydrogels have been explored for such purpose since they are biocompatible, present high chemical stability, and their properties may be tailored through different strategies. In this work, the influence of preparation conditions of PVA hydrogels on its morphology, water absorption capacity, thermotropic behavior, mechanical properties, and tribological performance was evaluated and compared with those of human cartilage (HC). The hydrogels were obtained by cast-drying (CD) and freeze-thawing (FT), in various conditions. It was found that the method of preparation of the PVA hydrogels critically affects their microstructure and performance. CD gels presented a denser structure, absorbed less water, were stiffer, dissipated less energy, and withstood higher loads than FT gels. Moreover, they led to friction coefficients against stainless steel comparable with those of HC. Overall, CD hydrogels had a closer performance to natural HC, when compared to FT ones.

19.
Materials (Basel) ; 12(20)2019 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-31652559

RESUMO

A systematic investigation of the influence of pseudowollastonite on the performance of a new family of low calcium hydraulic binders is described. Samples of the new low calcium binder were produced by an innovative process consisting of heating and homogenizing the mix of raw materials (limestone, sand, and fuel cracking catalyst) at a constant temperature followed by the rapid cooling of the mixture itself. Different maximum temperatures, close to the melting temperature of the mix, were tested, and materials with CaO/SiO2 (C/S) ratios of 0.9, 1.1, and 1.25 were produced into the form of the amorphous phase with small percentages of pseudowollastonite. Compressive strength results were determined at 7, 28, and 90 days of hydration, and the hydrated phases were analyzed using isothermal calorimetry, X-ray diffraction (XRD) analysis, thermogravimetry analysis (TGA), scanning electron microscopy (SEM), and differential scanning calorimetry (DSC). The present work is focused on the influence of the percentage of the pseudowollastonite phase on the binder compressive strength performance.

20.
Eur J Pharm Biopharm ; 141: 51-57, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31108210

RESUMO

Topical administration of both antibiotic and non-steroidal anti-inflammatory drugs after cataract removal surgery is usually recommended to avoid infection and inflammatory process development. In this work, a HEMA/MMA based hydrogel was developed as a platform for simultaneous release of an antibiotic (moxifloxacin) and a non-steroidal anti-inflammatory drug (diclofenac). Initially, hydrogels with different HEMA/MMA compositions and cross-linking contents were produced and loaded separately with moxifloxacin and diclofenac. The in vitro release profiles of the drugs from the hydrogels were obtained and a mathematical model was employed to estimate the concentration in vivo induced by such systems. The most promising hydrogel was then sequentially loaded with diclofenac and moxifloxacin, and the same mathematical model was applied to the in vitro release results. The results suggest that the dual-drug loaded hydrogel could potentially release effective amounts of antibiotic and anti-inflammatory for three weeks. Nonetheless, adjustment of the concentration profiles can be achieved for example by tailoring of the loading conditions.


Assuntos
Hidrogéis/administração & dosagem , Hidrogéis/química , Administração Tópica , Antibacterianos/administração & dosagem , Antibacterianos/química , Anti-Inflamatórios não Esteroides/administração & dosagem , Anti-Inflamatórios não Esteroides/química , Diclofenaco/administração & dosagem , Diclofenaco/química , Sistemas de Liberação de Medicamentos/métodos , Liberação Controlada de Fármacos/efeitos dos fármacos , Lentes Intraoculares , Metacrilatos/química , Metilmetacrilato/química , Moxifloxacina/administração & dosagem , Moxifloxacina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...