Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Chim Acta ; 1203: 339702, 2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35361434

RESUMO

In 2019 the COVID-19 pandemic, caused by SARS-CoV-2, demonstrated the urgent need for rapid, reliable, and portable diagnostics. The COVID-19 pandemic was declared in January 2020 and surges of the outbreak continue to reoccur. It is clear that early identification of infected individuals, especially asymptomatic carriers, plays a huge role in preventing the spread of the disease. The current gold standard diagnostic for SARS-CoV-2 is quantitative reverse transcription polymerase chain reaction (qRT-PCR) test based on the detection of the viral RNA. While RT-PCR is reliable and sensitive, it requires expensive centralized equipment and is time consuming (∼2 h or more); limiting its applicability in low resource areas. The FDA issued Emergency Use Authorizations (EUAs) for several COVID-19 diagnostics with an emphasis on point-of care (PoC) testing. Numerous RT-PCR and serological tests were approved for use at the point of care. Abbott's ID NOW, and Cue Health's COVID-19 test are of particular interest, which use isothermal amplification methods for rapid detection in under 20 min. We look to expand on the range of current PoC testing platforms with a new rapid and portable isothermal nucleic acid detection device. We pair reverse transcription loop mediated isothermal amplification (RT-LAMP) with a particle imaging technique, particle diffusometry (PD), to successfully detect SARS-CoV-2 in only 35 min on a portable chip with integrated heating. A smartphone device is used to image the samples containing fluorescent beads post-RT-LAMP and correlates decreased diffusivity to positive samples. We detect as little as 30 virus particles per µL from a RT-LAMP reaction in a microfluidic chip using a portable heating unit. Further, we can perform RT-LAMP from a diluted unprocessed saliva sample without RNA extraction. Additionally, we lyophilize SARS-CoV-2-specific RT-LAMP reactions that target both the N gene and the ORF1ab gene in the microfluidic chip, eliminating the need for cold storage. Our assay meets specific target product profiles outlined by the World Health Organization: it is specific to SARS-CoV-2, does not require cold storage, is compatible with digital connectivity, and has a detection limit of less than 35 × 104 viral particles per mL in saliva. PD-LAMP is rapid, simple, and attractive for screening and use at the point of care.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , Humanos , Pandemias , RNA Viral/análise , RNA Viral/genética , SARS-CoV-2/genética , Smartphone
2.
Malar J ; 20(1): 380, 2021 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-34563189

RESUMO

BACKGROUND: Globally, there are over 200 million cases of malaria annually and over 400,000 deaths. Early and accurate detection of low-density parasitaemia and asymptomatic individuals is key to achieving the World Health Organization (WHO) 2030 sustainable development goals of reducing malaria-related deaths by 90% and eradication in 35 countries. Current rapid diagnostic tests are neither sensitive nor specific enough to detect the low parasite concentrations in the blood of asymptomatic individuals. METHODS: Here, an imaging-based sensing technique, particle diffusometry (PD), is combined with loop mediated isothermal amplification (LAMP) on a smartphone-enabled device to detect low levels of parasitaemia often associated with asymptomatic malaria. After amplification, PD quantifies the Brownian motion of fluorescent nanoparticles in the solution during a 30 s video taken on the phone. The resulting diffusion coefficient is used to detect the presence of Plasmodium DNA amplicons. The coefficients of known negative samples are compared to positive samples using a one-way ANOVA post-hoc Dunnett's test for confirmation of amplification. RESULTS: As few as 3 parasite/µL of blood was detectable in 45 min without DNA extraction. Plasmodium falciparum parasites were detected from asymptomatic individuals' whole blood samples with 89% sensitivity and 100% specificity when compared to quantitative polymerase chain reaction (qPCR). CONCLUSIONS: PD-LAMP is of value for the detection of low density parasitaemia especially in areas where trained personnel may be scarce. The demonstration of this smartphone biosensor paired with the sensitivity of LAMP provides a proof of concept to achieve widespread asymptomatic malaria testing at the point of care.


Assuntos
Doenças Assintomáticas/epidemiologia , Testes Diagnósticos de Rotina/métodos , Malária Falciparum/diagnóstico , Malária Vivax/diagnóstico , Parasitemia/diagnóstico , Sistemas Automatizados de Assistência Junto ao Leito/normas , Smartphone/estatística & dados numéricos , Criança , Pré-Escolar , Humanos , Lactente , Técnicas de Diagnóstico Molecular , Técnicas de Amplificação de Ácido Nucleico , Plasmodium falciparum/isolamento & purificação , Plasmodium vivax/isolamento & purificação , Uganda
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...