Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Mol Biosci ; 10: 1192621, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37200868

RESUMO

The human protein tyrosine phosphatase non-receptor type 3 (PTPN3) is a phosphatase containing a PDZ (PSD-95/Dlg/ZO-1) domain that has been found to play both tumor-suppressive and tumor-promoting roles in various cancers, despite limited knowledge of its cellular partners and signaling functions. Notably, the high-risk genital human papillomavirus (HPV) types 16 and 18 and the hepatitis B virus (HBV) target the PDZ domain of PTPN3 through PDZ-binding motifs (PBMs) in their E6 and HBc proteins respectively. This study focuses on the interactions between the PTPN3 PDZ domain (PTPN3-PDZ) and PBMs of viral and cellular protein partners. We solved the X-ray structures of complexes between PTPN3-PDZ and PBMs of E6 of HPV18 and the tumor necrosis factor-alpha converting enzyme (TACE). We provide new insights into key structural determinants of PBM recognition by PTPN3 by screening the selectivity of PTPN3-PDZ recognition of PBMs, and by comparing the PDZome binding profiles of PTPN3-recognized PBMs and the interactome of PTPN3-PDZ. The PDZ domain of PTPN3 was known to auto-inhibit the protein's phosphatase activity. We discovered that the linker connecting the PDZ and phosphatase domains is involved in this inhibition, and that the binding of PBMs does not impact this catalytic regulation. Overall, the study sheds light on the interactions and structural determinants of PTPN3 with its cellular and viral partners, as well as on the inhibitory role of its PDZ domain on its phosphatase activity.

2.
Front Mol Biosci ; 9: 923740, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35836927

RESUMO

Hearing relies on the transduction of sound-evoked vibrations into electrical signals, occurring in the stereocilia bundle of inner ear hair cells. The G protein-coupled receptor (GPCR) ADGRV1 and the multi-PDZ protein PDZD7 play a critical role in the formation and function of stereocilia through their scaffolding and signaling properties. During hair cell development, the GPCR activity of ADGRV1 is specifically inhibited by PDZD7 through an unknown mechanism. Here, we describe the key interactions mediated by the two N-terminal PDZ domains of PDZD7 and the cytoplasmic domain of ADGRV1. Both PDZ domains can bind to the C-terminal PDZ binding motif (PBM) of ADGRV1 with the critical contribution of atypical C-terminal ß extensions. The two PDZ domains form a supramodule in solution, stabilized upon PBM binding. Interestingly, we showed that the stability and binding properties of the PDZ tandem are affected by two deafness-causing mutations located in the binding grooves of PDZD7 PDZ domains.

3.
BMC Bioinformatics ; 22(1): 190, 2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33853521

RESUMO

BACKGROUND: Harmonin Homogy Domains (HHD) are recently identified orphan domains of about 70 residues folded in a compact five alpha-helix bundle that proved to be versatile in terms of function, allowing for direct binding to a partner as well as regulating the affinity and specificity of adjacent domains for their own targets. Adding their small size and rather simple fold, HHDs appear as convenient modules to regulate protein-protein interactions in various biological contexts. Surprisingly, only nine HHDs have been detected in six proteins, mainly expressed in sensory neurons. RESULTS: Here, we built a profile Hidden Markov Model to screen the entire UniProtKB for new HHD-containing proteins. Every hit was manually annotated, using a clustering approach, confirming that only a few proteins contain HHDs. We report the phylogenetic coverage of each protein and build a phylogenetic tree to trace the evolution of HHDs. We suggest that a HHD ancestor is shared with Paired Amphipathic Helices (PAH) domains, a four-helix bundle partially sharing fold and functional properties. We characterized amino-acid sequences of the various HHDs using pairwise BLASTP scoring coupled with community clustering and manually assessed sequence features among each individual family. These sequence features were analyzed using reported structures as well as homology models to highlight structural motifs underlying HHDs fold. We show that functional divergence is carried out by subtle differences in sequences that automatized approaches failed to detect. CONCLUSIONS: We provide the first HHD databases, including sequences and conservation, phylogenic trees and a list of HHD variants found in the auditory system, which are available for the community. This case study highlights surprising phylogenetic properties found in orphan domains and will assist further studies of HHDs. We unveil the implication of HHDs in their various binding interfaces using conservation across families and a new protein-protein surface predictor. Finally, we discussed the functional consequences of three identified pathogenic HHD variants involved in Hoyeraal-Hreidarsson syndrome and of three newly reported pathogenic variants identified in patients suffering from Usher Syndrome.


Assuntos
Disceratose Congênita , Proteínas de Membrana , Sequência de Aminoácidos , Retardo do Crescimento Fetal , Humanos , Proteínas de Membrana/genética , Filogenia
4.
Sci Rep ; 11(1): 944, 2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33441627

RESUMO

Interactions between the hepatitis B virus core protein (HBc) and host cell proteins are poorly understood, although they may be essential for the propagation of the virus and its pathogenicity. HBc has a C-terminal PDZ (PSD-95, Dlg1, ZO-1)-binding motif (PBM) that is responsible for interactions with host PDZ domain-containing proteins. In this work, we focused on the human protein tyrosine phosphatase non-receptor type 3 (PTPN3) and its interaction with HBc. We solved the crystal structure of the PDZ domain of PTPN3 in complex with the PBM of HBc, revealing a network of interactions specific to class I PDZ domains despite the presence of a C-terminal cysteine in this atypical PBM. We further showed that PTPN3 binds the HBc protein within capsids or as a homodimer. We demonstrate that overexpression of PTPN3 significantly affects HBV infection in HepG2 NTCP cells. Finally, we performed proteomics studies on both sides by pull-down assays and screening of a human PDZ domain library. We identified a pool of human PBM-containing proteins that might interact with PTPN3 in cells and that could be in competition with the HBc PBM during infection, and we also identified potential cellular partners of HBc through PDZ-PBM interactions. This study opens up many avenues of future investigations into the pathophysiology of HBV.


Assuntos
Antígenos do Núcleo do Vírus da Hepatite B/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 3/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 3/ultraestrutura , Capsídeo/metabolismo , Hepatite B/metabolismo , Hepatite B/virologia , Antígenos do Núcleo do Vírus da Hepatite B/ultraestrutura , Vírus da Hepatite B/metabolismo , Vírus da Hepatite B/patogenicidade , Vírus da Hepatite B/fisiologia , Humanos , Domínios PDZ/fisiologia , Proteína Tirosina Fosfatase não Receptora Tipo 3/química , Proteína Tirosina Fosfatase não Receptora Tipo 3/fisiologia , Proteínas Tirosina Fosfatases/metabolismo , Tirosina/metabolismo , Proteínas do Core Viral/metabolismo
5.
J Mol Biol ; 432(22): 5920-5937, 2020 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-32971111

RESUMO

Hearing is a mechanical and neurochemical process, which occurs in the hair cells of inner ear that converts the sound vibrations into electrical signals transmitted to the brain. The multi-PDZ scaffolding protein whirlin plays a critical role in the formation and function of stereocilia exposed at the surface of hair cells. In this article, we reported seven stereociliary proteins that encode PDZ binding motifs (PBM) and interact with whirlin PDZ3, where four of them are first reported. We solved the atomic resolution structures of complexes between whirlin PDZ3 and the PBMs of myosin 15a, CASK, harmonin a1 and taperin. Interestingly, the PBM of CASK and taperin are rare non-canonical PBM, which are not localized at the extreme C terminus. This large capacity to accommodate various partners could be related to the distinct functions of whirlin at different stages of the hair cell development.


Assuntos
Células Ciliadas Auditivas/citologia , Células Ciliadas Auditivas/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Domínios PDZ/fisiologia , Ligação Proteica , Proteínas de Ciclo Celular/metabolismo , Proteínas do Citoesqueleto/metabolismo , Guanilato Quinases/metabolismo , Humanos , Miosinas/metabolismo , Proteínas , Estereocílios/metabolismo
6.
Structure ; 25(11): 1645-1656.e5, 2017 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-28966015

RESUMO

Hearing relies on the transduction of sound-evoked vibrations into electric signals, occurring in the stereocilia bundle of hair cells. The bundle is organized in a staircase pattern formed by rows of packed stereocilia. This architecture is pivotal to transduction and involves a network of scaffolding proteins with hitherto uncharacterized features. Key interactions in this network are mediated by PDZ domains. Here, we describe the architecture of the first two PDZ domains of whirlin, a protein involved in these assemblies and associated with congenital deaf-blindness. C-terminal hairpin extensions of the PDZ domains mediate the transient supramodular assembly, which improves the binding capacity of the first domain. We determined a detailed structural model of the closed conformation of the PDZ tandem and characterized its equilibrium with an ensemble of open conformations. The structural and dynamic behavior of this PDZ tandem provides key insights into the regulatory mechanisms involved in the hearing machinery.


Assuntos
Proteínas de Membrana/química , Proteínas do Tecido Nervoso/química , Domínios PDZ , Peptídeos/química , Sequência de Aminoácidos , Animais , Sítios de Ligação , Clonagem Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Células Ciliadas Auditivas/citologia , Células Ciliadas Auditivas/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Simulação de Dinâmica Molecular , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Peptídeos/síntese química , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Dobramento de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...