Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
2.
JDS Commun ; 4(5): 354-357, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37727251

RESUMO

Late-term abortions cause significant economic loss and are of great concern for dairy herds. Late-term abortions >152 d and <251 d of gestation that terminate a lactation or initiate a new lactation have long been recorded by Dairy Herd Improvement (DHI). For 24.8 million DHI lactations, the average recorded incidence of late-term abortions across all years (2001-2018) was 1.2%. However, the 1.3% incidence of abortions reported in 2012 has declined to <1.0% incidence since 2015. Small adjustments were applied to the 82 million daughter pregnancy rate (DPR), 29 million cow conception rate (CCR), and 9 million heifer conception rate (HCR) records to account for late-term abortions more accurately. Fertility credits for CCR and HCR were changed to treat the last breeding as a failure instead of success if the next calving was coded as a late-term abortion. Similarly, when computing DPR, days open is now set to the maximum value of 250 instead of the reported days open if the next reported calving is an abortion. The test of these changes showed very small changes in standard deviation and high correlations (0.997) of adjusted predicted transmitting abilities (PTA) with official PTA from about 20,000 Holstein bulls born since 2000 with >50% reliability. For late-term abortion as a trait, estimated heritability was only 0.001 and PTA had a standard deviation of only 0.1% for recent sires with high reliability (>75%). Young animal genomic PTA have near 50% reliability but range only from -0.5 to +0.4 because of the low incidence and heritability. Genetic trend was slightly favorable and late-term abortion PTA were correlated favorably by 0.27 with net merit, 0.49 with productive life, 0.33 with livability, 0.23 with CCR, 0.20 with HCR, 0.26 with DPR, -0.31 with somatic cell score, -0.24 with daughter stillbirth, and -0.26 with daughter dystocia. Thus, PTA for late-term abortions should not be needed as a separate fertility trait and instead these minor edit changes should suffice. The PTA for late-term abortions would add little value because national evaluations for current fertility traits already account for those economic losses.

3.
J Dairy Sci ; 106(2): 1110-1129, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36494224

RESUMO

Genomic selection increases accuracy and decreases generation interval, accelerating genetic changes in populations. Assumptions of genetic improvement must be addressed to quantify the magnitude and direction of change. Genetic trends of US dairy cattle breeds were examined to determine the genetic gain since the implementation of genomic evaluations in 2009. Inbreeding levels and generation intervals were also investigated. Breeds included Ayrshire, Brown Swiss, Guernsey, Holstein (HO), and Jersey (JE), which were characterized by the evaluation breed the animal received. Mean genomic predicted breeding values (PBV¯) were analyzed per year to calculate genetic trends for bulls and cows. The data set contained 154,008 bulls and 33,022,242 cows born since 1975. Breakpoints were estimated using linear regression, and nonlinear regression was used to fit the piecewise model for the small sample number in some years. Generation intervals and inbreeding levels were also investigated since 1975. Milk, fat, and protein yields, somatic cell score, productive life, daughter pregnancy rate, and livability PBV¯ were documented. In 2017, 100% of bulls in this data set were genotyped. The percentage of genotyped cows has increased 23 percentage points since 2010. Overall, production traits have increased steadily over time, as expected. The HO and JE breeds have benefited most from genomics, with up to 192% increase in genetic gain since 2009. Due to the low number of observations, trends for Ayrshire, Brown Swiss, and Guernsey are difficult to infer from. Trends in fertility are most substantial; particularly, most breeds are trending downwards and daughter pregnancy rate for JE has been decreasing steadily since 1975 for bulls and cows. Levels of genomic inbreeding are increasing in HO bulls and cows. In 2017, genomic inbreeding levels were 12.7% for bulls and 7.9% for cows. A suggestion to control this is to include the genomic inbreeding coefficient with a negative weight to the selection index of bulls with high future genomic inbreeding levels. For sires of bulls, the current generation intervals are 2.2 yr in HO, 3.2 in JE, 4.4 in Brown Swiss, 5.1 in Ayrshire, and 4.3 in Guernsey. The number of colored breed bulls in the United States is currently at an extremely low level, and this number will only increase with a market incentive or additional breed association involvement. Increased education and extension could be beneficial to increase knowledge about inbreeding levels, use of genomics and genetic improvement, and genetic diversity in the genomic selection era.


Assuntos
Genoma , Seleção Genética , Gravidez , Feminino , Bovinos/genética , Animais , Masculino , Estados Unidos , Genótipo , Endogamia , Genômica , Fenótipo
4.
J Dairy Sci ; 105(2): 1338-1345, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34955244

RESUMO

A new undesirable genetic factor, neuropathy with splayed forelimbs (JNS), has been identified recently in the Jersey breed. Calves affected with JNS are unable to stand on splayed forelimbs that exhibit significant extensor rigidity and excessive lateral abduction at birth. Affected calves generally are alert at birth but exhibit neurologic symptoms, including spasticity of head and neck and convulsive behavior. Other symptoms reported include dislocated shoulders, congenital craniofacial anomalies, and degenerative myelopathy. Inheritance of an undesirable genetic factor was determined from a study of 16 affected calves reported by Jersey breeders across the United States. All of their pedigrees traced back on both paternal and maternal sides to a common ancestor born in 1995. Genotypes revealed that JNS is attributable to a specific haplotype on Bos taurus autosome 6. Currently 8.2% of the genotyped US Jersey population are carriers of the haplotype. Sequencing of the region of shared homozygosity revealed missense variant rs1116058914 at base 60,158,901 of the ARS-UCD1.2 reference map as the most concordant with the genetic condition and the most likely cause. The single-base G to A substitution is in the coding region of the last exon of UCHL1, which is conserved across species. Mutations in humans and gene knockouts in mice cause similar recessive symptoms and muscular degeneration. Since December 2020, carrier status has been tracked using the identified haplotype and reported for all 459,784 genotyped Jersey animals. With random mating, about 2,200 affected calves per year with losses of about $250,000 would result from the 1.3 million US Jersey cows in the national population. Selection and mating programs can reduce numbers of JNS-affected births using either the haplotype status or a direct gene test in the future. Breeders should report calf abnormalities to their breed association to help discover new defects such as JNS.


Assuntos
Membro Anterior , Padrões de Herança , Animais , Bovinos/genética , Feminino , Genótipo , Haplótipos , Camundongos , Mutação , Estados Unidos
5.
J Dairy Sci ; 104(6): 6897-6908, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33685702

RESUMO

The addition of cattle health and immunity traits to genomic selection indices holds promise to increase individual animal longevity and productivity, and decrease economic losses from disease. However, highly variable genomic loci that contain multiple immune-related genes were poorly assembled in the first iterations of the cattle reference genome assembly and underrepresented during the development of most commercial genotyping platforms. As a consequence, there is a paucity of genetic markers within these loci that may track haplotypes related to disease susceptibility. By using hierarchical assembly of bacterial artificial chromosome inserts spanning 3 of these immune-related gene regions, we were able to assemble multiple full-length haplotypes of the major histocompatibility complex, the leukocyte receptor complex, and the natural killer cell complex. Using these new assemblies and the recently released ARS-UCD1.2 reference, we aligned whole-genome shotgun reads from 125 sequenced Holstein bulls to discover candidate variants for genetic marker development. We selected 124 SNPs, using heuristic and statistical models to develop a custom genotyping panel. In a proof-of-principle study, we used this custom panel to genotype 1,797 Holstein cows exposed to bovine tuberculosis (bTB) that were the subject of a previous GWAS study using the Illumina BovineHD array. Although we did not identify any significant association of bTB phenotypes with these new genetic markers, 2 markers exhibited substantial effects on bTB phenotypic prediction. The models and parameters trained in this study serve as a guide for future marker discovery surveys particularly in previously unassembled regions of the cattle genome.


Assuntos
Complexo Antígeno-Anticorpo , Genoma , Animais , Bovinos/genética , Feminino , Estudo de Associação Genômica Ampla/veterinária , Genômica , Genótipo , Masculino , Polimorfismo de Nucleotídeo Único/genética
6.
J Dairy Sci ; 104(1): 550-560, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33189290

RESUMO

The goal of this study was to identify potential quantitative trait loci (QTL) for 27 production, fitness, and conformation traits of Guernsey cattle through genome-wide association (GWA) analyses, with extra emphasis on BTA19, where major QTL were observed for several traits. Animals' de-regressed predicted transmitting abilities (PTA) from the December 2018 traditional US evaluation were used as phenotypes. All of the Guernsey cattle included in the QTL analyses were predictor animals in the reference population, ranging from 1,077 to 1,685 animals for different traits. Single-trait GWA analyses were carried out by a mixed-model approach for all 27 traits using imputed high-density genotypes. A major QTL was detected on BTA19, influencing several milk production traits, conformation traits, and livability of Guernsey cattle, and the most significant SNP lie in the region of 26.2 to 28.3 Mb. The myosin heavy chain 10 (MYH10) gene residing within this region was found to be highly associated with milk production and body conformation traits of dairy cattle. After the initial GWA analyses, which suggested that many significant SNP are in linkage with one another, conditional analyses were used for fine mapping. The top significant SNP on BTA19 were fixed as covariables in the model, one at a time, until no more significant SNP were detected on BTA19. After this fine-mapping approach was applied, only 1 significant SNP was detected on BTA19 for most traits, but multiple, independent significant SNP were found for protein yield, dairy form, and stature. In addition, the haplotype that hosts the major QTL on BTA19 was traced to a US Guernsey born in 1954. The haplotype is common in the breed, indicating a long-term influence of this QTL on the US Guernsey population.


Assuntos
Constituição Corporal/genética , Bovinos/genética , Leite , Locos de Características Quantitativas , Animais , Bovinos/anatomia & histologia , Bovinos/fisiologia , Mapeamento Cromossômico , Feminino , Ligação Genética , Estudo de Associação Genômica Ampla/veterinária , Genótipo , Haplótipos , Fenótipo
7.
J Dairy Sci ; 103(11): 10374-10382, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32896403

RESUMO

The widespread use of sexed semen on US dairy cows and heifers has led to an excess of replacement heifers' calves, and the sale prices for those calves are much lower than in the past. Females not selected to produce the next generation of replacement heifers are increasingly being bred to beef bulls to produce crossbred calves for beef production. The purpose of this study was to investigate the use of beef service sires bred to dairy cows and heifers and to provide a tool for dairy producers to evaluate beef service sires' conception. Sire conception rate (SCR) is a phenotypic evaluation of service sire fertility that is routinely calculated for US dairy bulls. A total of 268,174 breedings were available, which included 36 recognized beef breeds and 7 dairy breeds. Most of the beef-on-dairy inseminations (95.4%) were to Angus (AN) bulls. Because of the limited number of records among other breeds, we restricted our final evaluations to AN service sires bred to Holstein (HO) cows. Service-sire inbreeding and expected inbreeding of resulting embryo were set to zero because pedigree data for AN bulls were unavailable. There were 233,379 breedings from 1,344 AN service sire to 163,919 HO cows. A mean (SD) conception rate of 33.8% (47.3%) was observed compared with 34.3% (47.5%) for breedings with HO sires mated to HO cows. Publishable AN bulls were required to have ≥100 total matings, ≥10 matings in the most recent 12 mo, and breedings in at least 5 herds. Mean SCR reliability was 64.5% for 116 publishable bulls, with a maximum reliability of 99% based on 25,217 breedings. Average SCR was near zero (on AN base) with a range of -5.1 to 4.4. Breedings to HO heifers were also examined, which included 19,437 breedings (443 AN service sire and 15,971 HO heifers). A mean (SD) conception rate of 53.0% (49.9%) was observed, compared with 55.3% (49.7%) for breedings with a HO sire mated to a HO heifer. Beef sires were used more frequently in cows known to be problem breeders, which explains some of the difference in conception rate. Mean service number was 1.92 and 2.87 for HO heifers and 2.13 and 3.04 for HO cows mated to HO and AN sires, respectively. Mating dairy cows and heifers to beef bulls may be profitable if calf prices are higher, fertility is improved, or if practices such as sexed semen, genomic testing, and improved cow productive life allow herd owners to produce both higher quality dairy replacement and increased income from market calves.


Assuntos
Bovinos , Taxa de Gravidez , Animais , Indústria de Laticínios/métodos , Feminino , Fertilidade/genética , Fertilização , Masculino , Gravidez , Reprodutibilidade dos Testes , Seleção Artificial , Sêmen
8.
J Dairy Sci ; 103(6): 5302-5313, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32331889

RESUMO

The advent of genomic selection paved the way for an unprecedented acceleration in genetic progress. The increased ability to select superior individuals has been coupled with a drastic reduction in the generation interval for most dairy populations, representing both an opportunity and a challenge. Homozygosity is now rapidly accumulating in dairy populations. Currently, inbreeding depression is managed mostly by culling at the farm level and by controlling the overall accumulation of homozygosity at the population level. A better understanding of how homozygosity and recessive load are related will guarantee continued genetic improvement while curtailing the accumulation of harmful recessives and maintaining enough genetic variability to ensure the possibility of selection in the face of changing environmental conditions. In this review, we present a snapshot of the current dairy selection structure as it relates to response to selection and accumulation of homozygosity, briefly outline the main approaches currently used to manage inbreeding and overall variability, and present some approaches that can be used in the short term to control accumulation of harmful recessives while maintaining sustained selection pressure.


Assuntos
Criação de Animais Domésticos , Cruzamento , Bovinos/genética , Seleção Genética , Animais , Genômica , Homozigoto , Endogamia
9.
J Dairy Sci ; 103(6): 5354-5365, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32331897

RESUMO

The rate at which new traits are being developed is increasing, leading to an expanding number of evaluations provided to dairy producers, especially for functional traits. This review will discuss the development and implementation of genetic evaluations for direct health traits in the United States, as well as potential future developments. Beginning in April 2018, routine official genomic evaluations for 6 direct health traits in Holsteins were made available to US producers from the Council on Dairy Cattle Breeding (Bowie, MD). Traits include resistance to milk fever, displaced abomasum, ketosis, clinical mastitis, metritis, and retained placenta. These health traits were included in net merit indices beginning in August 2018, with a total weight of approximately 2%. Previously, improvement of cow health was primarily made through changes to management practices or genetic selection on indicator traits, such as somatic cell score, productive life, or livability. Widespread genomic testing now allows for accelerated improvement of traits with low heritabilities such as health; however, phenotypes remain essential to the success of genomic evaluations. Establishment and maintenance of data pipelines is a critical component of health trait evaluations, as well as appropriate data quality control standards. Data standardization is a necessary process when multiple data sources are involved. Model refinement continues, including implementation of variance adjustments beginning with the April 2019 evaluation. Mastitis evaluations are submitted to Interbull along with somatic cell score for international validation and evaluation of udder health. Additional areas of research include evaluation of other breeds for direct health traits, use of multiple-trait models, and evaluations for additional functional traits such as calf health and feed efficiency. Future developments will require new and continued cooperation among numerous industry stakeholders. There is more information available than ever before with which to make better selection decisions; however, this also makes it increasingly important to provide accurate and unbiased information.


Assuntos
Cruzamento , Doenças dos Bovinos/genética , Bovinos/genética , Indústria de Laticínios , Nível de Saúde , Animais , Peso Corporal/genética , Feminino , Genômica , Cetose/veterinária , Glândulas Mamárias Animais , Fenótipo , Placenta Retida/veterinária , Gravidez , Gastropatias/veterinária , Estados Unidos
10.
J Dairy Sci ; 103(3): 2477-2486, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31954583

RESUMO

Genomic selection is an important tool to introduce feed efficiency into dairy cattle breeding. The goals of the current research are to estimate genomic breeding values of residual feed intake (RFI) and to assess the prediction reliability for RFI in the US Holstein population. The RFI data were collected from 4,823 lactations of 3,947 Holstein cows in 9 research herds in the United States, and were pre-adjusted to remove phenotypic correlations with milk energy, metabolic body weight, body weight change, and for several environmental effects. In the current analyses, genomic predicted transmitting abilities of milk energy and of body weight composite were included into the RFI model to further remove the genetic correlations that remained between RFI and these energy sinks. In the first part of the analyses, a national genomic evaluation for RFI was conducted for all the Holsteins in the national database using a standard multi-step genomic evaluation method and 60,671 SNP list. In the second part of the study, a single-step genomic prediction method was applied to estimate genomic breeding values of RFI for all cows with phenotypes, 5,252 elite young bulls, 4,029 young heifers, as well as their ancestors in the pedigree, using a high-density genotype chip. Theoretical prediction reliabilities were calculated for all the studied animals in the single-step genomic prediction by direct inversion of the mixed model equations. In the results, breeding values were estimated for 1.6 million genotyped Holsteins and 60 million ungenotyped Holsteins, The genomic predicted transmitting ability correlations between RFI and other traits in the index (e.g., fertility) are generally low, indicating minor correlated responses on other index traits when selecting for RFI. Genomic prediction reliabilities for RFI averaged 34% for all phenotyped animals and 13% for all 1.6 million genotyped animals. Including genomic information increased the prediction reliabilities for RFI compared with using only pedigree information. All bulls had low reliabilities, and averaged to only 16% for the top 100 net merit progeny-tested bulls. Analyses using single-step genomic prediction and high-density genotypes gave similar results to those obtained from the national evaluation. The average theoretical reliability for RFI was 18% among the elite young bulls under 5 yr old, being lower in the younger generations of elite bulls compared with older bulls. To conclude, the size of the reference population and its relationship to the predicted population remain as the limiting factors in the genomic prediction for RFI. Continued collection of feed intake data is necessary so that reliabilities can be maintained due to close relationships of phenotyped animals with breeding stock. Considering the currently low prediction reliability and high cost of data collection, focusing RFI data collection on relatives of elite bulls that will have the greatest genetic contribution to the next generation will give more gains and profit.


Assuntos
Cruzamento , Bovinos/fisiologia , Ingestão de Alimentos , Animais , Peso Corporal/genética , Bovinos/genética , Feminino , Genoma , Lactação , Masculino , Leite/metabolismo , Linhagem , Fenótipo , Reprodutibilidade dos Testes
11.
J Dairy Sci ; 103(2): 1729-1734, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31837776

RESUMO

Genomic evaluation has improved both plant and animal breeding by allowing more accurate estimation of an individual's genetic potential. Because often only a small proportion of the population to be evaluated has been genotyped, genomic estimations rely heavily on complete pedigree information. Confirmation, discovery, and correction of parentage and connected relatives allow the creation of more complete pedigrees, which in turn increase the number of usable phenotypic records and prediction accuracy. Previous methods accounted for parent-progeny conflicts using SNP. More recently haplotype methods allowed discovery of distant relationships such as maternal grandsire (MGS) and maternal great-grandsire (MGGS) with improved accuracy. However, discovered MGS and MGGS often were not used, because no dam information was available to link them to the calf. An automated procedure to discover and fill missing maternal identification information was developed, allowing discovered MGS and MGGS to be used in imputation as well as in calculating breeding values for animals in the US dairy cattle database. An MGS was discovered for 295,136 animals with unknown dam, and the MGGS was discovered for 153,909 of these animals. A virtual maternal identification was added for animals with missing information. The effect of pedigree completion on progeny inbreeding, breeding values, and reliabilities was examined. Mean inbreeding of animals with missing maternal pedigree information was 6.69% before and 6.87% after pedigree assignment; expected future inbreeding was 7.24% before and 7.20% after assignment. Reliabilities for traditional breeding values increased from 26.6 to 32.6% for milk yield, 25.9 to 32.0% for fat yield, and 26.9 to 32.9% for protein yield; genomic reliabilities also increased slightly from 76.2 to 77.1% for milk, 76.0 to 76.9% for fat, and 76.3 to 77.3% for protein. The procedure developed for pedigree completion is a useful tool for improving accuracy of national and international evaluations and aiding producers in making better mating decisions.


Assuntos
Cruzamento , Bovinos/genética , Bases de Dados Genéticas , Linhagem , Animais , Feminino , Genômica , Genótipo , Haplótipos , Masculino , Leite , Reprodução
12.
J Dairy Sci ; 102(12): 11067-11080, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31563317

RESUMO

Improving feed efficiency (FE) of dairy cattle may boost farm profitability and reduce the environmental footprint of the dairy industry. Residual feed intake (RFI), a candidate FE trait in dairy cattle, can be defined to be genetically uncorrelated with major energy sink traits (e.g., milk production, body weight) by including genomic predicted transmitting ability of such traits in genetic analyses for RFI. We examined the genetic basis of RFI through genome-wide association (GWA) analyses and post-GWA enrichment analyses and identified candidate genes and biological pathways associated with RFI in dairy cattle. Data were collected from 4,823 lactations of 3,947 Holstein cows in 9 research herds in the United States. Of these cows, 3,555 were genotyped and were imputed to a high-density list of 312,614 SNP. We used a single-step GWA method to combine information from genotyped and nongenotyped animals with phenotypes as well as their ancestors' information. The estimated genomic breeding values from a single-step genomic BLUP were back-solved to obtain the individual SNP effects for RFI. The proportion of genetic variance explained by each 5-SNP sliding window was also calculated for RFI. Our GWA analyses suggested that RFI is a highly polygenic trait regulated by many genes with small effects. The closest genes to the top SNP and sliding windows were associated with dry matter intake (DMI), RFI, energy homeostasis and energy balance regulation, digestion and metabolism of carbohydrates and proteins, immune regulation, leptin signaling, mitochondrial ATP activities, rumen development, skeletal muscle development, and spermatogenesis. The region of 40.7 to 41.5 Mb on BTA25 (UMD3.1 reference genome) was the top associated region for RFI. The closest genes to this region, CARD11 and EIF3B, were previously shown to be related to RFI of dairy cattle and FE of broilers, respectively. Another candidate region, 57.7 to 58.2 Mb on BTA18, which is associated with DMI and leptin signaling, was also associated with RFI in this study. Post-GWA enrichment analyses used a sum-based marker-set test based on 4 public annotation databases: Gene Ontology, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, Reactome pathways, and medical subject heading (MeSH) terms. Results of these analyses were consistent with those from the top GWA signals. Across the 4 databases, GWA signals for RFI were highly enriched in the biosynthesis and metabolism of amino acids and proteins, digestion and metabolism of carbohydrates, skeletal development, mitochondrial electron transport, immunity, rumen bacteria activities, and sperm motility. Our findings offer novel insight into the genetic basis of RFI and identify candidate regions and biological pathways associated with RFI in dairy cattle.


Assuntos
Ração Animal , Bovinos/genética , Ingestão de Alimentos/genética , Estudo de Associação Genômica Ampla/veterinária , Ração Animal/análise , Animais , Peso Corporal/genética , Cruzamento , Bovinos/fisiologia , Indústria de Laticínios/métodos , Metabolismo Energético , Feminino , Genótipo , Lactação , Fenótipo
13.
J Dairy Sci ; 102(9): 8247-8250, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31255269

RESUMO

Phenotypes from the December 2018 US national genetic evaluations were used to compute effects of the polled haplotype in US Brown Swiss (BS), Holstein (HO), and Jersey (JE) cattle on milk, fat, and protein yields, somatic cell score, single-trait productive life, daughter pregnancy rate, heifer conception rate, and cow conception rate. Lactation records pre-adjusted for nongenetic factors and direct genomic values were used to estimate phenotypic and genetic effects of the polled haplotype, respectively. No phenotypic or direct genomic values effects were different from zero for any trait in any breed. Genomic PTA (gPTA) for the lifetime net merit (NM$) selection index of bulls born since January 1, 2012, that received a marketing code from the National Association of Animal Breeders (Madison, WI), and cows born on or after January 1, 2015, were compared to determine whether there was a systematic benefit to polled or horned genetics. Horned bulls had the highest average gPTA for NM$ in all 3 breeds, but that difference was significant only in HO and JE (HO: 615.4 ± 1.9, JE: 402.3 ± 3.4). Homozygous polled BS cows had significantly higher average gPTA for NM$ than their heterozygous polled or horned contemporaries (PP = 261.4 ± 43.5, Pp = 166.1 ± 13.7, pp = 174.1 ± 1.8), but the sample size was very small (n = 9). In HO and JE, horned cows had higher gPTA for NM$ (HO = 378.3 ± 0.2, JE = 283.3 ± 0.3). Selection for polled cattle should not have a detrimental effect on yield, fertility, or longevity, but these differences show that, in the short term, selection for polled over horned cattle will result in lower rates of genetic gain.


Assuntos
Bovinos/genética , Fertilidade/genética , Haplótipos/genética , Lactação/genética , Longevidade/genética , Fenótipo , Animais , Cruzamento/métodos , Bovinos/fisiologia , Contagem de Células , Feminino , Genômica , Genótipo , Haplótipos/fisiologia , Heterozigoto , Homozigoto , Masculino , Leite/química , Leite/citologia , Gravidez , Taxa de Gravidez , Seleção Genética
14.
J Dairy Sci ; 102(6): 5315-5322, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30954262

RESUMO

The effects of 2 deleterious recessive haplotypes on reproduction performance of Ayrshire cattle, Ayrshire Haplotype 1 (AH1) and Ayrshire Haplotype 2 (AH2), were investigated in Canadian Ayrshire cattle. We calculated their phenotypic effects on stillbirth (SB) rate and 56-d nonreturn rate (NRR) by estimating the interaction of service sire carrier status with maternal grandsire carrier status using the official Canadian evaluation models for those 2 traits. The interaction term included 9 subclasses for the 3 possible statuses of each bull: haplotype carrier, noncarrier, or not genotyped. For AH1, 394 carriers and 1,433 noncarriers were available, whereas 313 carriers and 1,543 noncarriers were available for the AH2 haplotype. The number of matings considered for SB was 34,312 for heifers (first parity) and 115,935 for cows (later parities). For NRR, 49,479 matings for heifers and 160,528 for cows were used to estimate the haplotype effects. We observed a negative effect of AH1 on SB rates, which was 2.0% higher for matings of AH1-carrier sires to dams that had an AH1-carrier sire; this effect was found for both heifers and cows. However, AH1 had small, generally nonsignificant effects on NRR. The AH2 haplotype had a substantial negative effect on NRR, with 5.1% more heifers and 4.0% more cows returning to service, but the effects on SB rates were inconsistent and mostly small effects. Our results validate the harmful effects of AH1 and AH2 on reproduction traits in the Canadian Ayrshire population. This information will be of great interest for the dairy industry, allowing producers to make mating decisions that would reduce reproductive losses.


Assuntos
Bovinos/genética , Genótipo , Reprodução/genética , Animais , Bovinos/fisiologia , Feminino , Predisposição Genética para Doença , Haplótipos , Masculino , Paridade , Gravidez , Natimorto/genética , Natimorto/veterinária
15.
J Dairy Sci ; 102(6): 5279-5294, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30981488

RESUMO

The variance of gametic diversity ( σgamete2) can be used to find individuals that more likely produce progeny with extreme breeding values. The aim of this study was to obtain this variance for individuals from routine genomic evaluations, and to apply gametic variance in a selection criterion in conjunction with breeding values to improve genetic progress. An analytical approach was developed to estimate σgamete2 by the sum of binomial variances of all individual quantitative trait loci across the genome. Simulation was used to verify the predictability of this variance in a range of scenarios. The accuracy of prediction ranged from 0.49 to 0.85, depending on the scenario and model used. Compared with sequence data, SNP data are sufficient for estimating σgamete2 Results also suggested that markers with low minor allele frequency and the covariance between markers should be included in the estimation. To incorporate σgamete2 into selective breeding programs, we proposed a new index, relative predicted transmitting ability, which better utilizes the genetic potential of individuals than traditional predicted transmitting ability. Simulation with a small genome showed an additional genetic gain of up to 16% in 10 generations, depending on the number of quantitative trait loci and selection intensity. Finally, we applied σgamete2 to the US genomic evaluations for Holstein and Jersey cattle. As expected, the DGAT1 gene had a strong effect on the estimation of σgamete2 for several production traits. However, inbreeding had a small impact on gametic variability, with greater effect for more polygenic traits. In conclusion, gametic variance, a potentially important parameter for selection programs, can be easily computed and is useful for improving genetic progress and controlling genetic diversity.


Assuntos
Cruzamento , Bovinos/genética , Células Germinativas , Seleção Genética , Animais , Frequência do Gene , Marcadores Genéticos , Genômica/métodos , Endogamia , Masculino , Modelos Genéticos , Herança Multifatorial , Locos de Características Quantitativas
16.
J Dairy Sci ; 102(7): 6131-6143, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31030925

RESUMO

Residual feed intake (RFI) is an estimate of animal feed efficiency, calculated as the difference between observed and expected feed intake. Expected intake typically is derived from a multiple regression model of dry matter intake on energy sinks, including maintenance and growth in growing animals, or maintenance, gain in body reserves, and milk production in lactating animals. The best period during the production cycle of a dairy cow to estimate RFI is not clear. Here, we characterized RFI in growing Holstein heifers (RFIGrowth; ∼10 to 14 mo of age; n = 226) and cows throughout a 305-d lactation (RFILac-Full; n = 118). The goals were to characterize relationships between RFI estimated at different production stages of the dairy cow; determine effects of selection for efficiency during growth on subsequent lactation and feed efficiency; and identify the most desirable testing scheme for RFILac-Full. For RFIGrowth, intake was predicted from multiple linear regression of metabolizable energy (ME) intake on mid-test body weight (BW)0.75 and average daily gain (ADG). For RFILac-Full, predicted intake was based on regression of BW0.75, ADG, and energy-corrected milk yield. Mean energy intake of the least and most efficient growing heifers (±0.5 standard deviations from mean RFIGrowth of 0) differed by 3.01 Mcal of ME/d, but the groups showed no difference in mid-test BW or ADG. Phenotypic correlation between RFIGrowth and RFI of heifers estimated in the first 100 d in milk (RFILac100DIM; n = 130) was 0.37. Ranking of these heifers as least (mean + 0.5 standard deviations), middle, or most efficient (mean - 0.5 standard deviations) based on RFIGrowth resulted in 43% maintaining the same ranking by RFILac100DIM. On average, the most efficient heifers ate 3.27 Mcal of ME/d less during the first 100 DIM than the least efficient heifers, but exhibited no differences in average energy-corrected milk yield, ADG, or BW. The correlation between RFILac100DIM and RFILac-Full was 0.72. Thus, RFIGrowth may serve as an indicator trait for RFI during lactation, and selection for heifers exhibiting low RFIGrowth should improve overall herd feed efficiency during lactation. Correlation analysis between RFILac-Full (10 to 305 DIM) and subperiod estimates of RFI during lactation indicated a test period of 64 to 70 d in duration occurring between 150 to 220 DIM provided a reliable approximation (r ≥ 0.90) of RFILac-Full among the test periods evaluated.


Assuntos
Ração Animal , Bovinos/metabolismo , Lactação , Ração Animal/análise , Animais , Peso Corporal , Bovinos/crescimento & desenvolvimento , Ingestão de Energia , Metabolismo Energético , Feminino , Leite
17.
J Dairy Sci ; 102(5): 4215-4226, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30852022

RESUMO

Disbudding and dehorning are commonly used cattle management practices to protect animals and humans from injury. They are unpleasant, costly processes subject to increased public scrutiny as an animal welfare issue. Horns are a recessively inherited trait, so one option to eliminate dehorning is to breed for polled (hornlessness). However, due to the low genetic merit and scarcity of polled dairy sires, this approach has not been widely adopted. In March 2018, only 3 Holstein and 0 Jersey active homozygous polled sires were registered with the National Association of Animal Breeders. Alternatively, gene editing to produce high-genetic-merit polled sires has been proposed. To further explore this concept, introgression of the POLLED allele into both the US Holstein and Jersey cattle populations via conventional breeding or gene editing (top 1% of bulls/year) was simulated for 3 polled mating schemes and compared with baseline selection on lifetime net merit (NM$) alone, over the course of 20 yr. Scenarios were replicated 10 times and the changes in HORNED allele frequency, inbreeding, genetic gain (NM$), and number of unique sires used were calculated. Gene editing decreased the frequency of the HORNED allele to <0.1 after 20 yr, which was as fast or faster than conventional breeding for both breeds. In the mating scheme that required the use of only existing homozygous polled sires, inbreeding reached 17% (Holstein) and 14% (Jersey), compared with less than 7% in the baseline scenarios. However, gene editing in the same mating scheme resulted in significantly less inbreeding, 9% (Holstein) and 8% (Jersey). Also, gene editing resulted in significantly higher NM$ after 20 yr compared with conventional breeding for both breeds. Additionally, the gene editing scenarios of both breeds used a significantly greater number of unique sires compared with either the conventional breeding or baseline scenarios. Overall, our simulations show that, given the current genetic merit of horned and polled dairy sires, the use of conventional breeding methods to decrease the frequency of the HORNED allele will increase inbreeding and slow genetic improvement. Furthermore, this study demonstrates how gene editing could be used to rapidly decrease the frequency of the HORNED allele in US dairy cattle populations while maintaining the rate of genetic gain, constraining inbreeding to acceptable levels, and simultaneously addressing an emerging animal welfare concern.


Assuntos
Cruzamento , Bovinos/genética , Indústria de Laticínios , Edição de Genes , Cornos , Alelos , Animais , Cruzamentos Genéticos , Indústria de Laticínios/métodos , Feminino , Frequência do Gene , Homozigoto , Masculino , Reprodução
18.
J Dairy Sci ; 102(3): 2308-2318, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30639024

RESUMO

The objective of this study was to model differences in pedigree accuracy caused by selective genotyping. As genotypes are used to correct pedigree errors, some pedigree relationships are more accurate than others. These accuracy differences can be modeled with uncertain parentage models that distribute the paternal (maternal) contribution across multiple sires (dams). In our case, the parents were the parent on record and an unknown parent group to account for pedigree relationships that were not confirmed through genotypes. Pedigree accuracy was addressed through simulation and through North American Holstein data. Data were simulated to be representative of the dairy industry with heterogeneous pedigree depth, pedigree accuracy, and genotyping. Holstein data were obtained from the official evaluation for milk, fat, and protein. Two models were compared: the traditional approach, assuming accurate pedigrees, and uncertain parentage, assuming variable pedigree accuracy. The uncertain parentage model was used to add pedigree relationships for alternative parents when pedigree relationships were not certain. The uncertain parentage model included 2 possible sires (dams) when the sire (dam) could not be confirmed with genotypes. The 2 sires (dams) were the sire (dam) on record with probability 0.90 (0.95) and the unknown parent group for the birth year of the sire (dam) with probability 0.10 (0.05). An additional set of assumptions was tested in simulation to mimic an extensive dairy production system by using a sire probability of 0.75, a dam probability of 0.85, and the remainder attributed to the unknown parent groups. In the simulation, small bias differences occurred between models based on pedigree accuracy and genotype status. Rank correlations were strong between traditional and uncertain parentage models in simulation (≥0.99) and in Holstein (≥0.99). For Holsteins, the estimated breeding value differences between models were small for most animals. Thus, traditional models can continue to be used for dairy genomic prediction despite using genotypes to improve pedigree accuracy. Those genotypes can also be used to discover maternal parentage, specifically maternal grandsires and great grandsires when the dam is not known. More research is needed to understand how to use discovered maternal pedigrees in genetic prediction.


Assuntos
Cruzamento , Genoma , Linhagem , Animais , Bovinos , Indústria de Laticínios , Genômica , Modelos Genéticos , Estados Unidos
19.
J Dairy Sci ; 102(4): 3735-3743, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30268602

RESUMO

Before fertility traits were incorporated into selection, dairy cattle breeding primarily focused on production traits, which resulted in an unfavorable decline in the reproductive performance of dairy cattle. This reduced fertility is constantly challenging the dairy industry on the efficiency and sustainability of dairy production. Recent development of genomic selection on fertility traits has stabilized and even reversed the decreasing trend, showing the effectiveness of genomic selection. Meanwhile, genome-wide association studies (GWAS) have been performed to identify quantitative trait loci (QTL) and candidate genes associated with dairy fertility, providing a better understanding of the genetic architecture of fertility traits. In this review, we provide an overview of the genetics of fertility traits, summarize the findings from existing GWAS of female fertility in dairy cattle, and update the recent research progress in US dairy cattle. Because of the polygenic nature of fertility traits, many GWAS of dairy fertility tended to be underpowered. Only 1 major QTL, on BTA18, was identified across multiple studies. This QTL was associated with a range of fertility traits from conception to calving, but the candidate gene or mutation is still missing. Collectively, with the promising success from genomic selection but low power of GWAS on dairy fertility traits, this review calls for continuous data collection of fertility traits to enable more powerful studies of dairy fertility in the future.


Assuntos
Bovinos/genética , Fertilidade/genética , Estudo de Associação Genômica Ampla/veterinária , Animais , Cruzamento , Indústria de Laticínios/métodos , Feminino , Fenótipo , Locos de Características Quantitativas/genética , Reprodução , Seleção Genética
20.
J Dairy Sci ; 101(11): 9987-10000, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30219417

RESUMO

Pregnancy-associated glycoproteins (PAG) are secreted by the trophoblast and are detectable in maternal circulation around the time of attachment of the fetal placenta, as well as in blood and milk throughout gestation. The understanding of the genetic mechanisms controlling PAG levels can confer advantages for livestock breeding programs given the precocity and the ease of obtaining this phenotype from routine pregnancy diagnosis. The aim of this study was to characterize PAG levels by estimating genetic parameters and correlations with other dairy traits, and to identify genomic regions and candidate genes associated with PAG levels in milk. The PAG data consisted of pregnancy diagnoses using commercial assays from 2012 to 2017, and genotype data consisted of 54,123 SNP markers for 2,352 individuals (embryos and dams). The model included contemporary group (herd, year, and season) and embryo age as fixed effects, and random embryonic (direct) and maternal (indirect) genetic effects. Using genomic data, the estimated heritability for direct and maternal genetic effects (± standard deviations) were 0.23 ± 0.05 and 0.11 ± 0.05, respectively. The genetic correlation between these effects was almost zero (0.001 ± 0.06). A preliminary analysis revealed low correlations between milk PAG levels and other dairy traits. The genome-wide association analysis was performed using 2 approaches: single-marker and single-step using all markers. Four genomic regions with direct genetic effects were detected on Bos taurus autosome (BTA) 6, BTA7, BTA19, and BTA29 of the embryonic genome. The BTA29 locus was within the bovine PAG gene cluster, suggesting a cis-regulatory quantitative trait locus on the PAG expression. However, other associations, without an obvious link to PAG expression, could be related to the transportation of PAG and their concentration in milk. Only 1 region from the maternal genome, on BTA4, had a significant indirect effect, where WNT2 is a candidate gene related to placenta vascularization and gestation health. Collectively, our results suggest a moderate genetic control of milk PAG levels from both maternal and fetal genomes, but larger studies are needed to fully evaluate the usefulness of milk PAG in the genetic evaluation of fetal growth and cow fertility.


Assuntos
Bovinos/genética , Glicoproteínas/análise , Leite/química , Proteínas da Gravidez/análise , Proteínas da Gravidez/genética , Animais , Cruzamento/métodos , Feminino , Estudo de Associação Genômica Ampla/veterinária , Genótipo , Glicoproteínas/sangue , Glicoproteínas/genética , Lactação , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Gravidez , Locos de Características Quantitativas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...