Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Access Microbiol ; 5(9)2023.
Artigo em Inglês | MEDLINE | ID: mdl-37841099

RESUMO

The SARS-CoV-2 pandemic demonstrated the importance of human coronaviruses and the need to develop materials to prevent the spread of emergent respiratory viruses. Coating of surfaces with antiviral materials is a major interest in controlling spread of viruses, especially in high-risk or high-traffic areas. A number of different coatings for surfaces have been proposed, each with their own advantages and disadvantages. Here we show that simple salt coating on a range of surfaces, including a novel biomass aerogel can reduce the infectivity of SARS-CoV-2 placed onto the surface. This suggests that a simple to apply coating could be applied to a range of materials and have an antiviral effect against SARS-CoV-2, as well as other potential emerging viruses.

2.
Nat Commun ; 14(1): 3322, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37369644

RESUMO

There has been limited characterisation of bat-borne coronaviruses in Europe. Here, we screened for coronaviruses in 48 faecal samples from 16 of the 17 bat species breeding in the UK, collected through a bat rehabilitation and conservationist network. We recovered nine complete genomes, including two novel coronavirus species, across six bat species: four alphacoronaviruses, a MERS-related betacoronavirus, and four closely related sarbecoviruses. We demonstrate that at least one of these sarbecoviruses can bind and use the human ACE2 receptor for infecting human cells, albeit suboptimally. Additionally, the spike proteins of these sarbecoviruses possess an R-A-K-Q motif, which lies only one nucleotide mutation away from a furin cleavage site (FCS) that enhances infectivity in other coronaviruses, including SARS-CoV-2. However, mutating this motif to an FCS does not enable spike cleavage. Overall, while UK sarbecoviruses would require further molecular adaptations to infect humans, their zoonotic risk warrants closer surveillance.


Assuntos
COVID-19 , Quirópteros , Animais , Humanos , COVID-19/genética , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Genômica , Reino Unido , Filogenia , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo
3.
Build Environ ; 240: 110422, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37251109

RESUMO

Severe acute respiratory syndrome coronavirus (SARS-CoV)-2, the virus that causes the coronavirus disease (COVID)-19, is primarily transmitted through respiratory droplets which linger in enclosed spaces, often exacerbated by HVAC systems. Although research to improve HVAC handling of SARS-CoV-2 is progressing, currently installed HVAC systems cause problems because they recirculate air and use ineffective filters against virus. This paper details the process of developing a novel method of eliminating air pollutants and suspended pathogens in enclosed spaces using Photocatalytic Oxidation (PCO) technology. It has been previously employed to remove organic contaminants and compounds from air streams using the irradiation of titanium dioxide (TiO2) surfaces with ultraviolet (UV) lights causing the disintegration of organic compounds by reactions with oxygen (O) and hydroxyl radicals (OH). The outcome was two functional prototypes that demonstrate the operation of PCO-based air purification principle. These prototypes comprise a novel TiO2 coated fibre mop system, which provide very large surface area for UV irradiation. Four commercially accessible materials were used for the construction of the mop: Tampico, Brass, Coco, and Natural synthetic. Two types of UV lights were used: 365 nm (UVA) and 270 nm (UVC). A series of tests were conducted that proved the prototype's functionality and its efficiency in lowering volatile organic compounds (VOCs) and formaldehyde (HCHO). The results shown that a MopFan with rotary mop constructed with Coco fibres and utilising UVC light achieves the best VOC and HCHO purification performance. Within 2 h, this combination lowered HCHO by 50% and VOCs by 23% approximately.

4.
Eur Geriatr Med ; 13(6): 1343-1355, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36385690

RESUMO

PURPOSE: Infections cause considerable care home morbidity and mortality. Nitric oxide (NO) has broad-spectrum anti-viral, bacterial and yeast activity in vitro. We assessed the feasibility of supplementing dietary nitrate (NO substrate) intake in care home residents. METHODS: We performed a cluster-randomised placebo-controlled trial in UK residential and nursing care home residents and compared nitrate containing (400 mg) versus free (0 mg daily) beetroot juice given for 60 days. Outcomes comprised feasibility of recruitment, adherence, salivary and urinary nitrate, and ordinal infection/clinical events. RESULTS: Of 30 targeted care homes in late 2020, 16 expressed interest and only 6 participated. 49 residents were recruited (median 8 [interquartile range 7-12] per home), mean (standard deviation) age 82 (8) years, with proxy consent 41 (84%), advance directive for hospital non-admission 8 (16%) and ≥ 1 doses of COVID-19 vaccine 37 (82%). Background dietary nitrate was < 30% of acceptable daily intake. 34 (76%) residents received > 50% of juice. Residents randomised to nitrate vs placebo had higher urinary nitrate levels, median 50 [18-175] v 18 [10-50] mg/L, difference 25 [0-90]. Data paucity precluded clinical between-group comparisons; the outcome distribution was as follows: no infection 32 (67%), uncomplicated infection 0, infection requiring healthcare support 11 (23%), all-cause hospitalisation 5 (10%), all-cause mortality 0. Urinary tract infections were most common. CONCLUSIONS: Recruiting UK care homes during the COVID-19 pandemic was partially successful. Supplemented dietary nitrate was tolerated and elevated urinary nitrate. Together, infections, hospitalisations and deaths occurred in 33% of residents over 60 days. A larger trial is now required. TRIAL REGISTRATION: ISRCTN51124684. Application date 7/12/2020; assignment date 13/1/2021.


Assuntos
Beta vulgaris , COVID-19 , Humanos , Idoso de 80 Anos ou mais , COVID-19/epidemiologia , Nitratos/uso terapêutico , Pandemias , Estudos de Viabilidade , Vacinas contra COVID-19 , Suplementos Nutricionais , Óxidos de Nitrogênio
5.
Sci Rep ; 12(1): 16654, 2022 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-36198720

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-the causative agent of coronavirus disease 2019 (COVID-19)-has caused a global public health emergency. Personal protective equipment (PPE) is the primary defence against viral exposure in healthcare and community settings. However, the surfaces of PPE materials may trap virus for contact transmission or through laden aerosols generated during removal of PPE, through cleaning or during movement. In this study, the relative efficacy of current PPE materials in terms of virion adsorption to materials and their antiviral potency, has been evaluated on a wide range of PPE for the first time, including four polymer glove types, two types of scrubs, apron material, a mask, visor and a selection of other commercial polymers and products. Although differences in virion adsorption to the test materials were observed, none of the existing polymer-based PPE resulted in more than tenfold reduction in the SARS-CoV-2 titre within either 10 min or 30 min contact period. The wettability and surface chemistry of the test materials were analysed to investigate any correlations with their surface physicochemical properties. While no correlation was found between wettability and viral retention under air flow challenge, one secondary ion of m/z 101.03 (+) and three secondary ions of m/z 31.98 (-), 196.93 (-) and 394.33 (+) in ToF-SIMS data of the test materials showed positive and negative correlations with the viral retention, respectively, which was identified by PLS regression model, suggesting that the surface chemistry plays a role in determining the extent of virion adsorption. Our findings outline the material aspects that influence the efficacy of current PPE against SARS-CoV-2 transmission and give suggestions on the development of novel simple polymer-based PPE for better infection protection.


Assuntos
COVID-19 , Equipamento de Proteção Individual , Antivirais , COVID-19/prevenção & controle , Pessoal de Saúde , Humanos , Transmissão de Doença Infecciosa do Paciente para o Profissional/prevenção & controle , Polímeros , Aerossóis e Gotículas Respiratórios , SARS-CoV-2
6.
Conserv Sci Pract ; 4(7): e12707, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35935171

RESUMO

Several studies have suggested SARS-CoV-2 originated from a viral ancestor in bats, but whether transmission occurred directly or via an intermediary host to humans remains unknown. Concerns of spillover of SARS-CoV-2 into wild bat populations are hindering bat rehabilitation and conservation efforts in the United Kingdom and elsewhere. Current protocols state that animals cared for by individuals who have tested positive for SARS-CoV-2 cannot be released into the wild and must be isolated to reduce the risk of transmission to wild populations. Here, we propose a reverse transcription-quantitative polymerase chain reaction (RT-qPCR)-based protocol for detection of SARS-CoV-2 in bats, using fecal sampling. Bats from the United Kingdom were tested following suspected exposure to SARS-CoV-2 and tested negative for the virus. With current UK and international legislation, the identification of SARS-CoV-2 infection in wild animals is becoming increasingly important, and protocols such as the one developed here will help improve understanding and mitigation of SARS-CoV-2 in the future.

7.
Virulence ; 12(1): 2946-2956, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34793280

RESUMO

The struggle to control the COVID-19 pandemic is made challenging by the emergence of virulent SARS-CoV-2 variants. To gain insight into their replication dynamics, emergent Alpha (A), Beta (B) and Delta (D) SARS-CoV-2 variants were assessed for their infection performance in single variant- and co-infections. The effectiveness of thapsigargin (TG), a recently discovered broad-spectrum antiviral, against these variants was also examined. Of the 3 viruses, the D variant exhibited the highest replication rate and was most able to spread to in-contact cells; its replication rate at 24 h post-infection (hpi) based on progeny viral RNA production was over 4 times that of variant A and 9 times more than the B variant. In co-infections, the D variant boosted the replication of its co-infected partners at the expense of its own initial performance. Furthermore, co-infection with AD or AB combination conferred replication synergy where total progeny (RNA) output was greater than the sum of corresponding single-variant infections. All variants were highly sensitive to TG inhibition. A single pre-infection priming dose of TG effectively blocked all single-variant infections and every combination (AB, AD, BD variants) of co-infection at greater than 95% (relative to controls) at 72 hpi. Likewise, TG was effective in inhibiting each variant in active preexisting infection. In conclusion, against the current backdrop of the dominant D variant that could be further complicated by co-infection synergy with new variants, the growing list of viruses susceptible to TG, a promising host-centric antiviral, now includes a spectrum of contemporary SARS-CoV-2 viruses.


Assuntos
Tratamento Farmacológico da COVID-19 , Coinfecção , SARS-CoV-2 , Tapsigargina , Antivirais/farmacologia , Antivirais/uso terapêutico , Humanos , Pandemias , SARS-CoV-2/efeitos dos fármacos , Tapsigargina/farmacologia , Tapsigargina/uso terapêutico
8.
F1000Res ; 10: 536, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35685687

RESUMO

Although the antimicrobial potential of nitric oxide (NO) is widely published, it is little used clinically. NO is a key signalling molecule modulating vascular, neuronal, inflammatory and immune responses. Endogenous antimicrobial activity is largely mediated by high local NO concentrations produced by cellular inducible nitric oxide synthase, and by derivative reactive nitrogen oxide species including peroxynitrite and S-nitrosothiols. NO may be taken as dietary substrate (inorganic nitrate, L-arginine), and therapeutically as gaseous NO, and transdermal, sublingual, oral, intranasal and intravenous nitrite or nitrate. Numerous preclinical studies have demonstrated that NO has generic static and cidal activities against viruses (including ß-coronaviruses such as SARS-CoV-2), bacteria, protozoa and fungi/yeasts  in vitro. Therapeutic effects have been seen in animal models  in vivo, and phase II trials have demonstrated that NO donors can reduce microbial infection. Nevertheless, excess NO, as occurs in septic shock, is associated with increased morbidity and mortality. In view of the dose-dependent positive and negative effects of NO, safety and efficacy trials of NO and its donors are needed for assessing their role in the prevention and treatment of infections. Trials should test dietary inorganic nitrate for pre- or post-exposure prophylaxis and gaseous NO or oral, topical or intravenous nitrite and nitrate for treatment of mild-to-severe infections, including due to SARS-CoV-2 (COVID-19). This review summarises the evidence base from  in vitro, in vivo and early phase clinical studies of NO activity in viral, bacterial, protozoal and fungal infections.


Assuntos
Tratamento Farmacológico da COVID-19 , COVID-19 , Micoses , Animais , Bactérias , COVID-19/prevenção & controle , Micoses/tratamento farmacológico , Micoses/prevenção & controle , Nitratos , Óxido Nítrico , Nitritos , SARS-CoV-2
9.
Methods Mol Biol ; 2203: 223-229, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32833215

RESUMO

All viruses have to overcome the innate immune response in order to establish infection. Methods have been developed to assay if, and how, viruses overcome these responses, and many can be directly applied to coronaviruses. Here, in vitro methods to determine how coronaviruses overcome this response are described.


Assuntos
Coronavirus/crescimento & desenvolvimento , Coronavirus/metabolismo , Cultura de Vírus/métodos , Animais , Linhagem Celular , Coronavirus/patogenicidade , Interações Hospedeiro-Patógeno , Humanos , Imunidade Inata/imunologia , Interferons , Coronavírus da Síndrome Respiratória do Oriente Médio/crescimento & desenvolvimento , Coronavírus da Síndrome Respiratória do Oriente Médio/patogenicidade , RNA Viral , Proteínas não Estruturais Virais , Replicação Viral
10.
J Virol ; 94(21)2020 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-32817221

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in China at the end of 2019 and has rapidly caused a pandemic, with over 20 million recorded COVID-19 cases in August 2020 (https://covid19.who.int/). There are no FDA-approved antivirals or vaccines for any coronavirus, including SARS-CoV-2. Current treatments for COVID-19 are limited to supportive therapies and off-label use of FDA-approved drugs. Rapid development and human testing of potential antivirals is urgently needed. Numerous drugs are already approved for human use, and subsequently, there is a good understanding of their safety profiles and potential side effects, making them easier to fast-track to clinical studies in COVID-19 patients. Here, we present data on the antiviral activity of 20 FDA-approved drugs against SARS-CoV-2 that also inhibit SARS-CoV and Middle East respiratory syndrome coronavirus (MERS-CoV). We found that 17 of these inhibit SARS-CoV-2 at non-cytotoxic concentrations. We directly followed up seven of these to demonstrate that all are capable of inhibiting infectious SARS-CoV-2 production. Moreover, we evaluated two of these, chloroquine and chlorpromazine, in vivo using a mouse-adapted SARS-CoV model and found that both drugs protect mice from clinical disease.IMPORTANCE There are no FDA-approved antivirals for any coronavirus, including SARS-CoV-2. Numerous drugs are already approved for human use that may have antiviral activity and therefore could potentially be rapidly repurposed as antivirals. Here, we present data assessing the antiviral activity of 20 FDA-approved drugs against SARS-CoV-2 that also inhibit SARS-CoV and MERS-CoV in vitro We found that 17 of these inhibit SARS-CoV-2, suggesting that they may have pan-anti-coronaviral activity. We directly followed up seven of these and found that they all inhibit infectious-SARS-CoV-2 production. Moreover, we evaluated chloroquine and chlorpromazine in vivo using mouse-adapted SARS-CoV. We found that neither drug inhibited viral replication in the lungs, but both protected against clinical disease.


Assuntos
Antivirais/farmacologia , Betacoronavirus/efeitos dos fármacos , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/virologia , Coronavírus da Síndrome Respiratória do Oriente Médio/efeitos dos fármacos , Pneumonia Viral/tratamento farmacológico , Pneumonia Viral/virologia , Células A549 , Animais , COVID-19 , Cloroquina/farmacologia , Clorpromazina/farmacologia , Aprovação de Drogas , Avaliação Pré-Clínica de Medicamentos , Humanos , Pandemias , SARS-CoV-2 , Resultado do Tratamento , Estados Unidos , United States Food and Drug Administration , Replicação Viral/efeitos dos fármacos , Tratamento Farmacológico da COVID-19
11.
JCI Insight ; 4(20)2019 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-31550243

RESUMO

Middle East respiratory syndrome coronavirus (MERS-CoV) emerged in 2012 in Saudi Arabia and has caused over 2400 cases and more than 800 deaths. Epidemiological studies identified diabetes as the primary comorbidity associated with severe or lethal MERS-CoV infection. Understanding how diabetes affects MERS is important because of the global burden of diabetes and pandemic potential of MERS-CoV. We used a model in which mice were made susceptible to MERS-CoV by expressing human DPP4, and type 2 diabetes was induced by administering a high-fat diet. Upon infection with MERS-CoV, diabetic mice had a prolonged phase of severe disease and delayed recovery that was independent of virus titers. Histological analysis revealed that diabetic mice had delayed inflammation, which was then prolonged through 21 days after infection. Diabetic mice had fewer inflammatory monocyte/macrophages and CD4+ T cells, which correlated with lower levels of Ccl2 and Cxcl10 expression. Diabetic mice also had lower levels of Tnfa, Il6, Il12b, and Arg1 expression and higher levels of Il17a expression. These data suggest that the increased disease severity observed in individuals with MERS and comorbid type 2 diabetes is likely due to a dysregulated immune response, which results in more severe and prolonged lung pathology.


Assuntos
Infecções por Coronavirus/imunologia , Diabetes Mellitus Tipo 2/imunologia , Coronavírus da Síndrome Respiratória do Oriente Médio/imunologia , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Quimiocina CCL2/análise , Quimiocina CCL2/metabolismo , Quimiocina CXCL10/análise , Quimiocina CXCL10/metabolismo , Comorbidade , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/virologia , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/epidemiologia , Dieta Hiperlipídica/efeitos adversos , Dipeptidil Peptidase 4/genética , Dipeptidil Peptidase 4/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Pulmão/imunologia , Pulmão/patologia , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Coronavírus da Síndrome Respiratória do Oriente Médio/isolamento & purificação , Monócitos/imunologia , Monócitos/metabolismo , Fatores de Risco , Índice de Gravidade de Doença
12.
Clin Sports Med ; 36(3): 427-445, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28577704

RESUMO

MRI remains the optimal imaging modality to evaluate cartilage injuries in the athlete. As these injuries have no intrinsic healing capacity, early and accurate noninvasive diagnosis remains integral to determining the most appropriate treatment option in this class of patients. Although surgical success depends primarily on clinical outcomes, MRI evaluation can provide pertinent information regarding the status of the surgical repair and the progression of cartilage disease.


Assuntos
Traumatismos em Atletas/diagnóstico por imagem , Cartilagem Articular/diagnóstico por imagem , Cartilagem Articular/lesões , Artroplastia/métodos , Traumatismos em Atletas/cirurgia , Cartilagem Articular/cirurgia , Humanos , Imageamento por Ressonância Magnética/métodos
13.
J Virol ; 91(12)2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28404843

RESUMO

Severe acute respiratory syndrome coronavirus (SARS-CoV) is a highly pathogenic respiratory virus that causes morbidity and mortality in humans. After infection with SARS-CoV, the acute lung injury caused by the virus must be repaired to regain lung function. A dysregulation in this wound healing process leads to fibrosis. Many survivors of SARS-CoV infection develop pulmonary fibrosis (PF), with higher prevalence in older patients. Using mouse models of SARS-CoV pathogenesis, we have identified that the wound repair pathway, controlled by the epidermal growth factor receptor (EGFR), is critical to recovery from SARS-CoV-induced tissue damage. In mice with constitutively active EGFR [EGFR(DSK5) mice], we find that SARS-CoV infection causes enhanced lung disease. Importantly, we show that during infection, the EGFR ligands amphiregulin and heparin-binding EGF-like growth factor (HB-EGF) are upregulated, and exogenous addition of these ligands during infection leads to enhanced lung disease and altered wound healing dynamics. Our data demonstrate a key role of EGFR in the host response to SARS-CoV and how it may be implicated in lung disease induced by other highly pathogenic respiratory viruses.IMPORTANCE PF has many causative triggers, including severe respiratory viruses such as SARS-CoV. Currently there are no treatments to prevent the onset or limit the progression of PF, and the molecular pathways underlying the development of PF are not well understood. In this study, we identified a role for the balanced control of EGFR signaling as a key factor in progression to PF. These data demonstrate that therapeutic treatment modulating EGFR activation could protect against PF development caused by severe respiratory virus infection.


Assuntos
Receptores ErbB/metabolismo , Pulmão/patologia , Fibrose Pulmonar/virologia , Síndrome Respiratória Aguda Grave/metabolismo , Síndrome Respiratória Aguda Grave/patologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/patogenicidade , Anfirregulina/administração & dosagem , Anfirregulina/metabolismo , Animais , Modelos Animais de Doenças , Humanos , Pulmão/virologia , Camundongos , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/patologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/fisiologia , Síndrome Respiratória Aguda Grave/virologia , Transdução de Sinais , Cicatrização/efeitos dos fármacos
14.
Vaccine ; 35(12): 1586-1589, 2017 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-28237499

RESUMO

The Middle East respiratory syndrome coronavirus (MERS-CoV) was first discovered in late 2012 and has gone on to cause over 1800 infections and 650 deaths. There are currently no approved therapeutics or vaccinations for MERS-CoV. The MERS-CoV spike (S) protein is responsible for receptor binding and virion entry to cells, is immunodominant and induces neutralizing antibodies in vivo, all of which, make the S protein an ideal target for anti-MERS-CoV vaccines. In this study, we demonstrate protection induced by vaccination with a recombinant MERS-CoV S nanoparticle vaccine and Matrix-M1 adjuvant combination in mice. The MERS-CoV S nanoparticle vaccine produced high titer anti-S neutralizing antibody and protected mice from MERS-CoV infection in vivo.


Assuntos
Infecções por Coronavirus/prevenção & controle , Coronavírus da Síndrome Respiratória do Oriente Médio/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinas de Partículas Semelhantes a Vírus/imunologia , Vacinas Virais/imunologia , Adjuvantes Imunológicos/administração & dosagem , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Modelos Animais de Doenças , Camundongos Endogâmicos BALB C , Coronavírus da Síndrome Respiratória do Oriente Médio/genética , Glicoproteína da Espícula de Coronavírus/genética , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia , Vacinas de Partículas Semelhantes a Vírus/administração & dosagem , Vacinas de Partículas Semelhantes a Vírus/genética , Vacinas Virais/administração & dosagem , Vacinas Virais/genética
15.
J Virol ; 91(2)2017 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-27807241

RESUMO

Middle East respiratory syndrome coronavirus (MERS-CoV) emerged in 2012 and is a highly pathogenic respiratory virus. There are no treatment options against MERS-CoV for humans or animals, and there are no large-scale clinical trials for therapies against MERS-CoV. To address this need, we developed an inactivated rabies virus (RABV) that contains the MERS-CoV spike (S) protein expressed on its surface. Our initial recombinant vaccine, BNSP333-S, expresses a full-length wild-type MERS-CoV S protein; however, it showed significantly reduced viral titers compared to those of the parental RABV strain and only low-level incorporation of full-length MERS-CoV S into RABV particles. Therefore, we developed a RABV-MERS vector that contained the MERS-CoV S1 domain of the MERS-CoV S protein fused to the RABV G protein C terminus (BNSP333-S1). BNSP333-S1 grew to titers similar to those of the parental vaccine vector BNSP333, and the RABV G-MERS-CoV S1 fusion protein was efficiently expressed and incorporated into RABV particles. When we vaccinated mice, chemically inactivated BNSP333-S1 induced high-titer neutralizing antibodies. Next, we challenged both vaccinated mice and control mice with MERS-CoV after adenovirus transduction of the human dipeptidyl peptidase 4 (hDPP4) receptor and then analyzed the ability of mice to control MERS-CoV infection. Our results demonstrated that vaccinated mice were fully protected from the MERS-CoV challenge, as indicated by the significantly lower MERS-CoV titers and MERS-CoV and mRNA levels in challenged mice than those in unvaccinated controls. These data establish that an inactivated RABV-MERS S-based vaccine may be effective for use in animals and humans in areas where MERS-CoV is endemic. IMPORTANCE: Rabies virus-based vectors have been proven to be efficient dual vaccines against rabies and emergent infectious diseases such as Ebola virus. Here we show that inactivated rabies virus particles containing the MERS-CoV S1 protein induce potent immune responses against MERS-CoV and RABV. This novel vaccine is easy to produce and may be useful to protect target animals, such as camels, as well as humans from deadly MERS-CoV and RABV infections. Our results indicate that this vaccine approach can prevent disease, and the RABV-based vaccine platform may be a valuable tool for timely vaccine development against emerging infectious diseases.


Assuntos
Infecções por Coronavirus/imunologia , Proteção Cruzada/imunologia , Coronavírus da Síndrome Respiratória do Oriente Médio/imunologia , Vírus da Raiva/imunologia , Raiva/imunologia , Vacinas Virais/imunologia , Animais , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/virologia , Modelos Animais de Doenças , Regulação Viral da Expressão Gênica , Humanos , Imunização , Camundongos , Interações Microbianas , Coronavírus da Síndrome Respiratória do Oriente Médio/genética , Raiva/prevenção & controle , Raiva/virologia , Vírus da Raiva/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinas Atenuadas , Vacinas Sintéticas , Proteínas Virais/genética , Proteínas Virais/imunologia , Vacinas Virais/administração & dosagem , Vacinas Virais/efeitos adversos , Vacinas Virais/genética , Montagem de Vírus
16.
J Virol ; 91(1)2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-27795435

RESUMO

Middle East respiratory syndrome coronavirus (MERS-CoV) is an important emerging pathogen that was first described in 2012. While the cell surface receptor for MERS-CoV has been identified as dipeptidyl peptidase 4 (DPP4), the mouse DPP4 homologue does not allow virus entry into cells. Therefore, development of mouse models of MERS-CoV has been hampered by the fact that MERS-CoV does not replicate in commonly available mouse strains. We have previously described a mouse model in which mDPP4 was replaced with hDPP4 such that hDPP4 is expressed under the endogenous mDPP4 promoter. In this study, we used this mouse model to analyze the host response to MERS-CoV infection using immunological assays and transcriptome analysis. Depletion of CD4+ T cells, CD8+ T cells, or macrophages has no effect on MERS-CoV replication in the lungs of infected mice. However, we found that depletion of CD8+ T cells protects and depletion of macrophages exacerbates MERS-CoV-induced pathology and clinical symptoms of disease. Overall, we demonstrate an important role for the inflammatory response in regulating MERS-CoV pathogenesis in vivo IMPORTANCE: The Middle East respiratory syndrome coronavirus (MERS-CoV) is a highly pathogenic respiratory virus that emerged from zoonotic sources in 2012. Human infections are still occurring throughout Saudi Arabia at a 38% case fatality rate, with the potential for worldwide spread via air travel. In this work, we identify the host response to the virus and identify inflammatory pathways and cell populations that are critical for protection from severe lung disease. By understanding the immune response to MERS-CoV we can develop targeted therapies to inhibit pathogenesis in the future.


Assuntos
Linfócitos T CD8-Positivos/virologia , Infecções por Coronavirus/imunologia , Dipeptidil Peptidase 4/genética , Macrófagos/virologia , Coronavírus da Síndrome Respiratória do Oriente Médio/patogenicidade , Receptores Virais/genética , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/virologia , Linfócitos T CD8-Positivos/imunologia , Infecções por Coronavirus/genética , Infecções por Coronavirus/patologia , Infecções por Coronavirus/virologia , Dipeptidil Peptidase 4/imunologia , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno , Humanos , Pulmão/imunologia , Pulmão/virologia , Depleção Linfocítica , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Coronavírus da Síndrome Respiratória do Oriente Médio/genética , Coronavírus da Síndrome Respiratória do Oriente Médio/imunologia , Regiões Promotoras Genéticas , Receptores Virais/imunologia , Transcriptoma , Transgenes , Internalização do Vírus , Replicação Viral
17.
J Virol ; 90(19): 8924-33, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27466418

RESUMO

UNLABELLED: The highly pathogenic severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV) cause significant morbidity and morality. There is currently no approved therapeutic for highly pathogenic coronaviruses, even as MERS-CoV is spreading throughout the Middle East. We previously screened a library of FDA-approved drugs for inhibitors of coronavirus replication in which we identified Abelson (Abl) kinase inhibitors, including the anticancer drug imatinib, as inhibitors of both SARS-CoV and MERS-CoV in vitro Here we show that the anti-CoV activity of imatinib occurs at the early stages of infection, after internalization and endosomal trafficking, by inhibiting fusion of the virions at the endosomal membrane. We specifically identified the imatinib target, Abelson tyrosine-protein kinase 2 (Abl2), as required for efficient SARS-CoV and MERS-CoV replication in vitro These data demonstrate that specific approved drugs can be characterized in vitro for their anticoronavirus activity and used to identify host proteins required for coronavirus replication. This type of study is an important step in the repurposing of approved drugs for treatment of emerging coronaviruses. IMPORTANCE: Both SARS-CoV and MERS-CoV are zoonotic infections, with bats as the primary source. The 2003 SARS-CoV outbreak began in Guangdong Province in China and spread to humans via civet cats and raccoon dogs in the wet markets before spreading to 37 countries. The virus caused 8,096 confirmed cases of SARS and 774 deaths (a case fatality rate of ∼10%). The MERS-CoV outbreak began in Saudi Arabia and has spread to 27 countries. MERS-CoV is believed to have emerged from bats and passed into humans via camels. The ongoing outbreak of MERS-CoV has resulted in 1,791 cases of MERS and 640 deaths (a case fatality rate of 36%). The emergence of SARS-CoV and MERS-CoV provides evidence that coronaviruses are currently spreading from zoonotic sources and can be highly pathogenic, causing serious morbidity and mortality in humans. Treatment of SARS-CoV and MERS-CoV infection is limited to providing supportive therapy consistent with any serious lung disease, as no specific drugs have been approved as therapeutics. Highly pathogenic coronaviruses are rare and appear to emerge and disappear within just a few years. Currently, MERS-CoV is still spreading, as new infections continue to be reported. The outbreaks of SARS-CoV and MERS-CoV and the continuing diagnosis of new MERS cases highlight the need for finding therapeutics for these diseases and potential future coronavirus outbreaks. Screening FDA-approved drugs streamlines the pipeline for this process, as these drugs have already been tested for safety in humans.


Assuntos
Antivirais/farmacologia , Mesilato de Imatinib/farmacologia , Coronavírus da Síndrome Respiratória do Oriente Médio/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/efeitos dos fármacos , Internalização do Vírus/efeitos dos fármacos , Animais , Linhagem Celular , Humanos , Coronavírus da Síndrome Respiratória do Oriente Médio/fisiologia , Proteínas Tirosina Quinases/antagonistas & inibidores , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/fisiologia
18.
Sci Transl Med ; 8(326): 326ra21, 2016 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-26888429

RESUMO

As of 13 November 2015, 1618 laboratory-confirmed human cases of Middle East respiratory syndrome coronavirus (MERS-CoV) infection, including 579 deaths, had been reported to the World Health Organization. No specific preventive or therapeutic agent of proven value against MERS-CoV is currently available. Public Health England and the International Severe Acute Respiratory and Emerging Infection Consortium identified passive immunotherapy with neutralizing antibodies as a treatment approach that warrants priority study. Two experimental MERS-CoV vaccines were used to vaccinate two groups of transchromosomic (Tc) bovines that were genetically modified to produce large quantities of fully human polyclonal immunoglobulin G (IgG) antibodies. Vaccination with a clade A γ-irradiated whole killed virion vaccine (Jordan strain) or a clade B spike protein nanoparticle vaccine (Al-Hasa strain) resulted in Tc bovine sera with high enzyme-linked immunosorbent assay (ELISA) and neutralizing antibody titers in vitro. Two purified Tc bovine human IgG immunoglobulins (Tc hIgG), SAB-300 (produced after Jordan strain vaccination) and SAB-301 (produced after Al-Hasa strain vaccination), also had high ELISA and neutralizing antibody titers without antibody-dependent enhancement in vitro. SAB-301 was selected for in vivo and preclinical studies. Administration of single doses of SAB-301 12 hours before or 24 and 48 hours after MERS-CoV infection (Erasmus Medical Center 2012 strain) of Ad5-hDPP4 receptor-transduced mice rapidly resulted in viral lung titers near or below the limit of detection. Tc bovines, combined with the ability to quickly produce Tc hIgG and develop in vitro assays and animal model(s), potentially offer a platform to rapidly produce a therapeutic to prevent and/or treat MERS-CoV infection and/or other emerging infectious diseases.


Assuntos
Cromossomos de Mamíferos/genética , Imunoglobulina G/imunologia , Coronavírus da Síndrome Respiratória do Oriente Médio/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Facilitadores , Bovinos , Dipeptidil Peptidase 4/metabolismo , Ensaio de Imunoadsorção Enzimática , Humanos , Camundongos Endogâmicos BALB C , Coronavírus da Síndrome Respiratória do Oriente Médio/genética , Coronavírus da Síndrome Respiratória do Oriente Médio/fisiologia , Testes de Neutralização , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução Genética , Vacinação , Replicação Viral
19.
J Virol ; 89(23): 11820-33, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26378163

RESUMO

UNLABELLED: Severe acute respiratory syndrome (SARS) emerged in November 2002 as a case of atypical pneumonia in China, and the causative agent of SARS was identified to be a novel coronavirus, severe acute respiratory syndrome coronavirus (SARS-CoV). Bone marrow stromal antigen 2 (BST-2; also known as CD317 or tetherin) was initially identified to be a pre-B-cell growth promoter, but it also inhibits the release of virions of the retrovirus human immunodeficiency virus type 1 (HIV-1) by tethering budding virions to the host cell membrane. Further work has shown that BST-2 restricts the release of many other viruses, including the human coronavirus 229E (hCoV-229E), and the genomes of many of these viruses encode BST-2 antagonists to overcome BST-2 restriction. Given the previous studies on BST-2, we aimed to determine if BST-2 has the ability to restrict SARS-CoV and if the SARS-CoV genome encodes any proteins that modulate BST-2's antiviral function. Through an in vitro screen, we identified four potential BST-2 modulators encoded by the SARS-CoV genome: the papain-like protease (PLPro), nonstructural protein 1 (nsp1), ORF6, and ORF7a. As the function of ORF7a in SARS-CoV replication was previously unknown, we focused our study on ORF7a. We found that BST-2 does restrict SARS-CoV, but the loss of ORF7a leads to a much greater restriction, confirming the role of ORF7a as an inhibitor of BST-2. We further characterized the mechanism of BST-2 inhibition by ORF7a and found that ORF7a localization changes when BST-2 is overexpressed and ORF7a binds directly to BST-2. Finally, we also show that SARS-CoV ORF7a blocks the restriction activity of BST-2 by blocking the glycosylation of BST-2. IMPORTANCE: The severe acute respiratory syndrome coronavirus (SARS-CoV) emerged from zoonotic sources in 2002 and caused over 8,000 infections and 800 deaths in 37 countries around the world. Identifying host factors that regulate SARS-CoV pathogenesis is critical to understanding how this lethal virus causes disease. We have found that BST-2 is capable of restricting SARS-CoV release from cells; however, we also identified a SARS-CoV protein that inhibits BST-2 function. We show that the SARS-CoV protein ORF7a inhibits BST-2 glycosylation, leading to a loss of BST-2's antiviral function.


Assuntos
Antígenos CD/fisiologia , Glicosilação , Fases de Leitura Aberta/genética , Síndrome Respiratória Aguda Grave/virologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/fisiologia , Vírion/fisiologia , Ligação Viral , Animais , Chlorocebus aethiops , Cromatografia de Afinidade , Clonagem Molecular , Proteases 3C de Coronavírus , Cisteína Endopeptidases/genética , Primers do DNA/genética , Citometria de Fluxo , Proteínas Ligadas por GPI/fisiologia , Células HEK293 , Humanos , Imunoprecipitação , Microscopia Confocal , Microscopia Eletrônica , Fases de Leitura Aberta/fisiologia , RNA Polimerase Dependente de RNA/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Vero , Proteínas não Estruturais Virais/genética , Proteínas Virais/genética
20.
Curr Protoc Microbiol ; 37: 15E.2.1-9, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-26344219

RESUMO

Middle East respiratory syndrome coronavirus (MERS-CoV) is an emerging highly pathogenic respiratory virus. Although MERS-CoV only emerged in 2012, we and others have developed assays to grow and quantify infectious MERS-CoV and RNA products of replication in vitro. MERS-CoV is able to infect a range of cell types, but replicates to high titers in Vero E6 cells. Protocols for the propagation and quantification of MERS-CoV are presented.


Assuntos
Coronavírus da Síndrome Respiratória do Oriente Médio/crescimento & desenvolvimento , Coronavírus da Síndrome Respiratória do Oriente Médio/isolamento & purificação , Carga Viral/métodos , Cultura de Vírus/métodos , Animais , Chlorocebus aethiops , Coronavírus da Síndrome Respiratória do Oriente Médio/genética , RNA Viral/análise , RNA Viral/isolamento & purificação , Células Vero
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...