Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Pharm Sci ; 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39173744

RESUMO

Deep infection is the second most common complication of arthroplasty following loosening of the implant. Antibiotic-loaded bone cements (ALBCs) and high concentrations of systemic broad-spectrum antibiotics are commonly used to prevent infections following injury and surgery. However, clinical data fails to show that ALBCs are effective against deep infection, and negative side effects can result following prolonged administration of antibiotics. Additionally, the rise of multidrug resistant (MDR) bacteria provides an urgent need for alternatives to broad-spectrum antibiotics. Phage therapy, or the use of bacteriophages (viruses that infect bacteria) to target pathogenic bacteria, might offer a safe alternative to combat MDR bacteria. Application of phage therapy in the setting of deep infections requires formulation strategies that would stabilize bacteriophage against chemical and thermal stress during bone-cement polymerization, that maintain bacteriophage activity for weeks or months at physiological temperatures, and that allow for sustained release of phage to combat slow-growing, persistent bacteria. Here, we demonstrate the formulation of three phages that target diverse bacterial pathogens, which includes spray-drying of the particles for enhanced thermal stability at 37 °C and above. Additionally, we use atomic layer deposition (ALD) to coat spray-dried powders with alumina to allow for delayed release of phage from the dry formulations, and potentially protect phage against chemical damage during bone cement polymerization. Together, these findings present a strategy to formulate phages that possess thermal stability and sustained release properties for use in deep infections.

2.
J Pharm Sci ; 113(8): 2072-2080, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38643898

RESUMO

Enveloped viruses are attractive candidates for use as gene- and immunotherapeutic agents due to their efficacy at infecting host cells and delivering genetic information. They have also been used in vaccines as potent antigens to generate strong immune responses, often requiring fewer doses than other vaccine platforms as well as eliminating the need for adjuvants. However, virus instability in liquid formulations may limit their shelf life and require that these products be transported and stored under stringently controlled temperature conditions, contributing to high cost and limiting patient access. In this work, spray-drying and lyophilization were used to embed an infectious enveloped virus within dry, glassy polysaccharide matrices. No loss of viral titer was observed following either spray-drying (at multiple drying gas temperatures) or lyophilization. Furthermore, viruses embedded in the glassy formulations showed enhanced thermal stability, retaining infectivity after exposure to elevated temperatures as high as 85 °C for up to one hour, and for up to 10 weeks at temperatures as high as 30 °C. In comparison, viruses in liquid formulations lost infectivity within an hour at temperatures above 40 °C, or after incubation at 25 °C for longer periods of time.


Assuntos
Liofilização , Secagem por Atomização , Liofilização/métodos , Animais , Estabilidade de Medicamentos , Temperatura , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA