Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 28(11): 17113-17121, 2020 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-32549520

RESUMO

We report here on one-dimensional (1D) grating couplers based on hybrid silicon/LNOI platform for polarization-independent and high-efficient single-polarization coupling efficiencies. A low index oxide buffer layer was introduced in between the top silicon high index grating coupler and bottom LNOI waveguide. With optimal design of the buffer layer thicknesses, modal and index matches can be tuned for either single polarization or both TE/TM polarization coupling applications. Over 70% coupling efficiency can be achieved for single polarization based on the basic uniform 1D grating coupler design without any bottom reflectors incorporated. Polarization independent coupling efficiency of 51% was also achieved. The spectral bandwidth is over 50 nm with polarization dependent loss of 0.1 dB. The proposed structure is simple to fabricate. Detailed modal and loss analysis suggest different dominant loss mechanisms in the proposed hybrid structure, where the introduction of the bottom mirror may not result in significant improvement in coupling efficiency, as the dominant loss mechanism arises from the top reflection loss.

2.
ACS Appl Mater Interfaces ; 11(30): 27371-27377, 2019 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-31265223

RESUMO

Metal-assisted chemical etching (MacEtch) is an emerging anisotropic chemical etching technique that has been used to fabricate high aspect ratio semiconductor micro- and nanostructures. Despite its advantages in unparalleled anisotropy, simplicity, versatility, and damage-free nature, the adaptation of MacEtch for silicon (Si)-based electronic device fabrication process is hindered by the use of a gold (Au)-based metal catalyst, as Au is a detrimental deep-level impurity in Si. In this report, for the first time, we demonstrate CMOS-compatible titanium nitride (TiN)-based MacEtch of Si by establishing a true vapor-phase (VP) MacEtch approach in order to overcome TiN-MacEtch-specific challenges. Whereas inverse-MacEtch is observed using conventional liquid phase MacEtch because of the limited mass transport from the strong adhesion between TiN and Si, the true VP etch leads to forward MacEtch and produces Si nanowire arrays by engraving the TiN mesh pattern in Si. The etch rate as a function of etch temperature, solution concentration, TiN dimension, and thickness is systematically characterized to uncover the underlying nature of MacEtching using this new catalyst. VP MacEtch represents a significant step toward scalability of this disruptive technology because of the high controllability of gas phase reaction dynamics. TiN-MacEtch may also have direct implications in embedded TiN-based plasmonic semiconductor structures for photonic applications.

3.
ACS Appl Mater Interfaces ; 10(10): 9116-9122, 2018 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-29406759

RESUMO

Defying text definitions of wet etching, metal-assisted chemical etching (MacEtch), a solution-based, damage-free semiconductor etching method, is directional, where the metal catalyst film sinks with the semiconductor etching front, producing 3D semiconductor structures that are complementary to the metal catalyst film pattern. The same recipe that works perfectly to produce ordered array of nanostructures for single-crystalline Si (c-Si) fails completely when applied to polycrystalline Si (poly-Si) with the same doping type and level. Another long-standing challenge for MacEtch is the difficulty of uniformly etching across feature sizes larger than a few micrometers because of the nature of lateral etching. The issue of interface control between the catalyst and the semiconductor in both lateral and vertical directions over time and over distance needs to be systematically addressed. Here, we present a self-anchored catalyst (SAC) MacEtch method, where a nanoporous catalyst film is used to produce nanowires through the pinholes, which in turn physically anchor the catalyst film from detouring as it descends. The systematic vertical etch rate study as a function of porous catalyst diameter from 200 to 900 nm shows that the SAC-MacEtch not only confines the etching direction but also enhances the etch rate due to the increased liquid access path, significantly delaying the onset of the mass-transport-limited critical diameter compared to nonporous catalyst c-Si counterpart. With this enhanced mass transport approach, vias on multistacks of poly-Si/SiO2 are also formed with excellent vertical registry through the polystack, even though they are separated by SiO2 which is readily removed by HF alone with no anisotropy. In addition, 320 µm square through-Si-via (TSV) arrays in 550 µm thick c-Si are realized. The ability of SAC-MacEtch to etch through poly/oxide/poly stack as well as more than half millimeter thick silicon with excellent site specificity for a wide range of feature sizes has significant implications for 2.5D/3D photonic and electronic device applications.

4.
Nat Mater ; 10(9): 676-81, 2011 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-21785415

RESUMO

Optoelectronic devices have long benefited from structuring in multiple dimensions on microscopic length scales. However, preserving crystal epitaxy, a general necessity for good optoelectronic properties, while imparting a complex three-dimensional structure remains a significant challenge. Three-dimensional (3D) photonic crystals are one class of materials where epitaxy of 3D structures would enable new functionalities. Many 3D photonic crystal devices have been proposed, including zero-threshold lasers, low-loss waveguides, high-efficiency light-emitting diodes (LEDs) and solar cells, but have generally not been realized because of material limitations. Exciting concepts in metamaterials, including negative refraction and cloaking, could be made practical using 3D structures that incorporate electrically pumped gain elements to balance the inherent optical loss of such devices. Here we demonstrate the 3D-template-directed epitaxy of group III-V materials, which enables formation of 3D structured optoelectronic devices. We illustrate the power of this technique by fabricating an electrically driven 3D photonic crystal LED.

5.
Nature ; 465(7296): 329-33, 2010 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-20485431

RESUMO

Compound semiconductors like gallium arsenide (GaAs) provide advantages over silicon for many applications, owing to their direct bandgaps and high electron mobilities. Examples range from efficient photovoltaic devices to radio-frequency electronics and most forms of optoelectronics. However, growing large, high quality wafers of these materials, and intimately integrating them on silicon or amorphous substrates (such as glass or plastic) is expensive, which restricts their use. Here we describe materials and fabrication concepts that address many of these challenges, through the use of films of GaAs or AlGaAs grown in thick, multilayer epitaxial assemblies, then separated from each other and distributed on foreign substrates by printing. This method yields large quantities of high quality semiconductor material capable of device integration in large area formats, in a manner that also allows the wafer to be reused for additional growths. We demonstrate some capabilities of this approach with three different applications: GaAs-based metal semiconductor field effect transistors and logic gates on plates of glass, near-infrared imaging devices on wafers of silicon, and photovoltaic modules on sheets of plastic. These results illustrate the implementation of compound semiconductors such as GaAs in applications whose cost structures, formats, area coverages or modes of use are incompatible with conventional growth or integration strategies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA