Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(5): e0286495, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37256881

RESUMO

The p38 alpha mitogen-activated protein kinase (p38α) is linked to both innate and adaptive immune responses and is under investigation as a target for drug development in the context of Alzheimer's disease (AD) and other conditions with neuroinflammatory dysfunction. While preclinical data has shown that p38α inhibition can protect against AD-associated neuropathology, the underlying mechanisms are not fully elucidated. Inhibitors of p38α may provide benefit via modulation of microglial-associated neuroinflammatory responses that contribute to AD pathology. The present study tests this hypothesis by knocking out microglial p38α and assessing early-stage pathological changes. Conditional knockout of microglial p38α was accomplished in 5-month-old C57BL/6J wild-type and amyloidogenic AD model (APPswe/PS1dE9) mice using a tamoxifen-inducible Cre/loxP system under control of the Cx3cr1 promoter. Beginning at 7.5 months of age, animals underwent behavioral assessment on the open field, followed by a later radial arm water maze test and collection of cortical and hippocampal tissues at 11 months. Additional endpoint measures included quantification of proinflammatory cytokines, assessment of amyloid burden and plaque deposition, and characterization of microglia-plaque dynamics. Loss of microglial p38α did not alter behavioral outcomes, proinflammatory cytokine levels, or overall amyloid plaque burden. However, this manipulation did significantly increase hippocampal levels of soluble Aß42 and reduce colocalization of Iba1 and 6E10 in a subset of microglia in close proximity to plaques. The data presented here suggest that rather than reducing inflammation per se, the net effect of microglial p38α inhibition in the context of early AD-type amyloid pathology is a subtle alteration of microglia-plaque interactions. Encouragingly from a therapeutic standpoint, these data suggest no detrimental effect of even substantial decreases in microglial p38α in this context. Additionally, these results support future investigations of microglial p38α signaling at different stages of disease, as well as its relationship to phagocytic processes in this particular cell-type.


Assuntos
Doença de Alzheimer , Animais , Camundongos , Doença de Alzheimer/patologia , Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Proteínas Amiloidogênicas/farmacologia , Citocinas/metabolismo , Modelos Animais de Doenças , Inflamação/patologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/metabolismo , Placa Amiloide/patologia , Proteína Quinase 14 Ativada por Mitógeno
2.
J Vis Exp ; (143)2019 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-30741259

RESUMO

In this manuscript, a method for the immunization of alpaca and the use of molecular biology methods to produce antigen-specific single domain antibodies is described and demonstrated. Camelids, such as alpacas and llamas, have become a valuable resource for biomedical research since they produce a novel type of heavy chain-only antibody which can be used to produce single domain antibodies. Because the immune system is highly flexible, single domain antibodies can be made to many different protein antigens, and even different conformations of the antigen, with a very high degree of specificity. These features, among others, make single domain antibodies an invaluable tool for biomedical research. A method for the production of single domain antibodies from alpacas is reported. A protocol for immunization, blood collection, and B-cell isolation is described. The B-cells are used for the construction of an immunized library, which is used in the selection of specific single domain antibodies via panning. Putative specific single domain antibodies obtained via panning are confirmed by pull-down, ELISA, or gel-shift assays. The resulting single domain antibodies can then be used either directly or as a part of an engineered reagent. The uses of single domain antibody and single domain antibody-based regents include structural, biochemical, cellular, in vivo, and therapeutic applications. Single domain antibodies can be produced in large quantities as recombinant proteins in prokaryotic expression systems, purified, and used directly or can be engineered to contain specific markers or tags that can be used as reporters in cellular studies or in diagnostics.


Assuntos
Antígenos/imunologia , Camelídeos Americanos/imunologia , Imunização/métodos , Proteínas Recombinantes/imunologia , Anticorpos de Domínio Único/biossíntese , Animais , Camelídeos Americanos/genética , Humanos , Anticorpos de Domínio Único/imunologia , Anticorpos de Domínio Único/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...