Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Addict Biol ; 19(1): 77-86, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23461423

RESUMO

Abstinence from cocaine self-administration (SA) is associated with neuroadaptations in the prefrontal cortex (PFC) and nucleus accumbens (NAc) that are implicated in cocaine-induced neuronal plasticity and relapse to drug-seeking. Alterations in cAMP-dependent protein kinase A (PKA) signaling are prominent in medium spiny neurons in the NAc after repeated cocaine exposure but it is unknown whether similar changes occur in the PFC. Because cocaine SA induces disturbances in glutamatergic transmission in the PFC-NAc pathway, we examined whether dysregulation of PKA-mediated molecular targets in PFC-NAc neurons occurs during abstinence and, if so, whether it contributes to cocaine-seeking. We measured the phosphorylation of cAMP response element binding protein (Ser133) and GluA1 (Ser845) in the dorsomedial (dm) PFC and the presynaptic marker, synapsin I (Ser9, Ser62/67, Ser603), in the NAc after 7 days of abstinence from cocaine SA with or without cue-induced cocaine-seeking. We also evaluated whether infusion of the PKA inhibitor, 8-bromo-Rp-cyclic adenosine 3', 5'-monophosphorothioate (Rp-cAMPs), into the dmPFC after abstinence would affect cue-induced cocaine-seeking and PKA-regulated phosphoprotein levels. Seven days of forced abstinence increased the phosphorylation of cAMP response element binding protein and GluA1 in the dmPFC and synapsin I (Ser9) in the NAc. Induction of these phosphoproteins was reversed by a cue-induced relapse test of cocaine-seeking. Bilateral intra-dmPFC Rp-cAMPs rescued abstinence-elevated PKA-mediated phosphoprotein levels in the dmPFC and NAc and suppressed cue-induced relapse. Thus, by inhibiting abstinence-induced PKA molecular targets, relapse reverses abstinence-induced neuroadaptations in the dmPFC that are responsible, in part, for the expression of cue-induced cocaine-seeking.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/fisiologia , Comportamento de Procura de Droga/fisiologia , Núcleo Accumbens/metabolismo , Córtex Pré-Frontal/metabolismo , Análise de Variância , Animais , Western Blotting , Proteína de Ligação a CREB/metabolismo , Cocaína/administração & dosagem , Cocaína/farmacologia , Sinais (Psicologia) , AMP Cíclico/análogos & derivados , AMP Cíclico/farmacologia , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Modelos Animais de Doenças , Inibidores da Captação de Dopamina/administração & dosagem , Inibidores da Captação de Dopamina/farmacologia , Comportamento de Procura de Droga/efeitos dos fármacos , Masculino , Plasticidade Neuronal/efeitos dos fármacos , Fosfoproteínas/metabolismo , Fosforilação , Ratos , Ratos Sprague-Dawley , Receptores de AMPA/metabolismo , Recidiva , Autoadministração , Sinapsinas/metabolismo , Tionucleotídeos/farmacologia
2.
Front Syst Neurosci ; 5: 60, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21811445

RESUMO

Exposure to psychostimulants increases brain-derived neurotrophic factor (BDNF) mRNA and protein levels in the cerebral cortex and subcortical structures. Because BDNF is co-localized with dopamine and glutamate in afferents to the striatum of rats, it may be co-released with those neurotransmitters upon stimulation. Further, there may be an interaction between the intracellular signaling cascades activated by dopamine, glutamate, and TrkB receptors in medium spiny striatal neurons. In the present study, the effect of acute amphetamine administration on TrkB phosphorylation, as an indirect indicator of activation, and striatal gene expression, was evaluated. In Experiment 1, 15 min or 2 h after a single saline or amphetamine (2.5 mg/kg, i.p.) injection, the caudate-putamen (CPu), nucleus accumbens (NAc), and dorsomedial prefrontal cortex (dmPFC) were extracted and processed for phospho (p)-TrkB immunoreactivity. Immunoprecipitation analyses indicated that neither the tyrosine phosphorylation (p-Tyr) or autophosphorylation sites of TrkB (706) were changed in NAc, CPu, or dmPFC 15 min after amphetamine administration. In contrast, p-Tyr and the PLCγ phosphorylation site of TrkB (816) were increased in the NAc and CPu 2 h after amphetamine. In Experiment 2, intra-striatal infusion of the tyrosine kinase inhibitor, K252a, increased amphetamine-induced vertical activity but not total distance traveled. In addition, K252a inhibited amphetamine-induced preprodynorphin, but not preproenkephalin, mRNA expression in the striatum. These data indicate that acute amphetamine administration induces p-TrkB activation and signaling in a time- and brain region-dependent manner and that TrkB/BDNF signaling plays an important role in amphetamine-induced behavior and striatal gene expression.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...