Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38823490

RESUMO

BACKGROUND: In the recent years, there was an important improvement in the understanding of the pathogenesis of hereditary angioedema (HAE). Notwithstanding, in a large portion of patients with unknown mutation (HAE-UNK) the genetic cause remains to be identified. OBJECTIVES: To identify new genetic targets associated with HAE, a large Argentine family with HAE-UNK spanning 3 generations was studied. METHODS: Whole exome sequencing was performed on affected family members to identify potential genetic variants associated with HAE-UNK. In silico analyses and experimental studies were applied to assess the role of the identified gene variant. RESULTS: A missense variant (p.D239N) in DAB2IP was identified. The variant occurred in the C2-domain, the region interacting with vascular endothelial growth factor receptor 2 (VEGFR2). It was found to be rare, and predicted to have a detrimental effect on the functionality of DAB2IP. Protein structure modeling predicted changes in the mutant p.D239N protein structure, impacting protein stability. The p.D239N variant affected the subcellular localization of VEGFR2. Cells transfected with the DAB2IP-239N transcript exhibited an intracellular distribution, and VEGFR2 remained associated with the cell membrane. The altered localization pattern indicated reduced colocalization of the mutant protein with VEGFR2, suggesting a diminished ability of VEGFR2 binding. CONCLUSIONS: The study identified a novel missense variant (p.D239N) in DAB2IP in a family with HAE-UNK and highlighted the role of dysregulated VEGF-mediated signaling in altered endothelial permeability. DAB2IP loss-of-function pathogenic variants lead to the impairment of the endothelial VEGF/VEGFR2 ligand system and represent a new pathophysiologic cause of HAE-UNK.

2.
Artigo em Inglês | MEDLINE | ID: mdl-35460811

RESUMO

Autism Spectrum Disorders (ASD) core symptoms include deficits of social interaction, stereotyped behaviours, dysfunction in language and communication. Beyond them, several additional symptoms, such as cognitive impairment, anxiety-like states and hyperactivity are often occurring, mainly overlapping with other neuropsychiatric diseases. To untangle mechanisms underlying ASD etiology, and to identify possible pharmacological approaches, different factors, such as environmental, immunological and genetic ones, need to be considered. In this context, ASD animal models, aiming to reproduce the wide range of behavioural phenotypes of this uniquely human disorder, represent a very useful tool. Ketamine administration in early postnatal life of mice has already been studied as a suitable animal model resembling psychotic-like symptoms. Here, we investigated whether ketamine administration, at postnatal days 7, 9 and 11, might induce behavioural features able to mimic ASD typical symptoms in adult mice. To this aim, we developed a 4-days behavioural tests battery, including Marble Burying, Hole Board, Olfactory and Social tests, to assess repetitive and stereotyped behaviour, social deficits and anxiety-like symptoms. Moreover, by using this mouse model, we performed neurochemical and biomolecular analyses, quantifying neurotransmitters belonging to excitatory-inhibitory pathways, such as glutamate, glutamine and gamma-aminobutyric acid (GABA), as well as immune activation biomarkers related to ASD, such as CD11b and glial fibrillary acidic protein (GFAP), in the hippocampus and amygdala. Possible alterations in levels of brain-derived neurotrophic factor (BDNF) expression in the hippocampus and amygdala were also evaluated. Our results showed an increase in stereotyped behaviours, together with social impairments and anxiety-like behaviour in adult mice, receiving ketamine administration in early postnatal life. In addition, we found decreased BDNF and enhanced GFAP hippocampal expression levels, accompanied by elevations in glutamate amount, as well as reduction in GABA content in amygdala and hippocampus. In conclusion, early ketamine administration may represent a suitable animal model of ASD, exhibiting face validity to mimic specific ASD symptoms, such as social deficits, repetitive repertoire and anxiety-like behaviour.


Assuntos
Transtorno do Espectro Autista , Modelos Animais de Doenças , Ketamina , Animais , Transtorno do Espectro Autista/induzido quimicamente , Transtorno do Espectro Autista/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Glutamatos , Ketamina/efeitos adversos , Camundongos , Ácido gama-Aminobutírico
3.
Biomolecules ; 11(5)2021 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-34063630

RESUMO

The 3-O-acetyl-11-keto-ß-boswellic acid (AKBA) is the most active compound of Boswellia serrata proposed for treating neurodegenerative disorders, including Alzheimer's disease (AD), characterized in its early phase by alteration in mood. Accordingly, we have previously demonstrated that an intracerebroventricular injection of soluble amyloid beta 1-42 (Aß) peptide evokes a depressive-like phenotype in rats. We tested the protective effects of AKBA in the mouse model of an Aß-induced depressive-like phenotype. We evaluated the depressive-like behavior by using the tail suspension test (TST) and the splash test (ST). Behavioral analyses were accompanied by neurochemical quantifications, such as glutamate (GLU), kynurenine (KYN) and monoamines, and by biochemical measurements, such as glial fibrillary acid protein (GFAP), CD11b and nuclear factor kappa B (NF-kB), in mice prefrontal cortex (PFC) and hippocampus (HIPP). AKBA prevented the depressive-like behaviors induced by Aß administration, since we recorded a reduction in latency to initiate self-care and total time spent to perform self-care in the ST and reduced time of immobility in the TST. Likewise, the increase in GLU and KYN levels in PFC and HIPP induced by the peptide injection were reverted by AKBA administration, as well as the displayed increase in levels of GFAP and NF-kB in both PFC and HIPP, but not in CD11b. Therefore, AKBA might represent a food supplement suitable as an adjuvant for therapy of depression in early-stage AD.


Assuntos
Peptídeos beta-Amiloides/efeitos adversos , Antidepressivos/administração & dosagem , Depressão/tratamento farmacológico , Triterpenos/administração & dosagem , Animais , Antidepressivos/farmacologia , Biomarcadores/metabolismo , Depressão/induzido quimicamente , Depressão/metabolismo , Modelos Animais de Doenças , Proteína Glial Fibrilar Ácida/metabolismo , Ácido Glutâmico/metabolismo , Cinurenina/metabolismo , Masculino , Camundongos , Resultado do Tratamento , Triterpenos/farmacologia
4.
Pharmaceuticals (Basel) ; 14(4)2021 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-33917814

RESUMO

Polyunsaturated fatty acids (PUFA) are involved in brain disorders associated to amyloid beta (Aß) toxicity for which oxidative stress, neurochemical dysfunctions, and neuroinflammation are underlying mechanisms. Here, mechanisms through which lifelong exposure to n-3 PUFA-enriched or n-6/n-3 balanced diets could elicit a protective role in a rat model of Aß-induced toxicity were investigated. To this aim, we quantified hippocampal reactive oxygen species (ROS) amount, 8-hydroxy-2'-deoxyguanosine and interleukin-10 levels, NADPH oxidase (NOX) 1, NOX2, superoxide dismutase 1, and glutathione contents, as well as plasmatic malondialdehyde. Moreover, in the same experimental groups, we assessed tryptophan, serotonin, and its turnover, kynurenine, and noradrenaline amounts. Results showed increased hippocampal ROS and NOX2 levels, serotonin turnover, kynurenine, and noradrenaline contents in Aß-treated rats. Both n-6/n-3 balanced and n-3 PUFA enriched diets reduced ROS production, NOX1 and malondialdehyde levels, serotonin turnover, and kynurenine amount in Aß-injected rats, while increasing NOX2, superoxide dismutase 1, and serotonin contents. No differences in plasmatic coenzyme Q10, reduced glutathione (GSH) and tryptophan levels were detected among different experimental groups, whereas GSH + oxidized glutathione (GSSG) levels were increased in sham animals fed with n-3 PUFA enriched diet and in Aß-treated rats exposed to both n-6/n-3 balanced and n-3 enriched diets. In addition, Aß-induced decrease of interleukin-10 levels was prevented by n-6/n-3 PUFA balanced diet. N-3 PUFA enriched diet further increased interleukin-10 and 8-hydroxy-2'-deoxyguanosine levels. In conclusion, our data highlight the possible neuroprotective role of n-3 PUFA in perturbation of oxidative equilibrium induced by Aß-administration.

5.
Front Pharmacol ; 12: 799561, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35046821

RESUMO

Alzheimer's disease (AD), one of the most widespread neurodegenerative disorder, is a fatal global burden for the elder population. Although many efforts have been made, the search of a curative therapy is still ongoing. Individuating phenotypic traits that might help in investigating treatment response is of growing interest in AD research. AD is a complex pathology characterized by many comorbidities, such as depression and increased susceptibility to pain perception, leading to postulate that these conditions may rely on common biological substrates yet to be determined. In order to investigate those biological determinants to be associable with phenotypic traits, we used the rat model of amyloid beta-induced toxicity. This established model of early phase of AD is obtained by the intracerebroventricular injection of soluble amyloid beta1-42 (Aß) peptide 7 days before performing experiments. In this model, we have previously reported increased immobility in the forced swimming test, reduced cortical serotonin levels and subtle alterations in the cognitive domain a depressive-like phenotype associated with subtle alteration in memory processes. In light of evaluating pain perception in this animal model, we performed two different behavioral tests commonly used, such as the paw pressure test and the cold plate test, to analyze mechanical hyperalgesia and thermal allodynia, respectively. Behavioural outcomes confirmed the memory impairment in the social recognition test and, compared to sham, Aß-injected rats showed an increased selective susceptibility to mechanical but not to thermal stimulus. Behavioural data were then corroborated by neurochemical and biochemical biomarker analyses either at central or peripheral level. Data showed that the peptide injection evoked a significant increase in hypothalamic glutamate, kynurenine and dopamine content, while serotonin levels were reduced. Plasma Cystatin-C, a cysteine protease, was increased while serotonin and melatonin levels were decreased in Aß-injected rats. Urinary levels paralleled plasma quantifications, indicating that Aß-induced deficits in pain perception, mood and cognitive domain may also depend on these biomarkers. In conclusion, in the present study, we demonstrated that this animal model can mimic several comorbid conditions typical of the early phase of AD. Therefore, in the perspective of generating novel therapeutic strategies relevant to precision medicine in AD, this animal model and the biomarkers evaluated herein may represent an advantageous approach.

6.
Artigo em Inglês | MEDLINE | ID: mdl-31446158

RESUMO

Administration in adulthood of subanaesthetic doses of ketamine, an NMDA receptor (NMDA-R) antagonist, is commonly used to induce psychotic-like alterations in rodents. The NADPH oxidase (NOX) derived-oxidative stress has been shown to be implicated in ketamine-induced neurochemical dysfunctions and in the loss of parvalbumin (PV)-positive interneurons associated to the administration of this NMDA receptor antagonist in adult mice. However, very few data are available on the effects of early ketamine administration and its contribution to the development of long-term dysfunctions leading to psychosis. Here, by administering a subanaesthetic dose of ketamine (30 mg/kg i.p.) to mice at postnatal days (PNDs) 7, 9 and 11, we aimed at investigating early neurochemical and oxidative stress-related alterations induced by this NMDA-R antagonist in specific brain regions of mice pups, i.e. prefrontal cortex (PFC) and nucleus accumbens (NAcc) and to assess whether these alterations lasted until the adult period. To this purpose, we evaluated glutamatergic, glutamine and GABAergic tissue levels, as well as PV amount in the PFC, both two hours after the last ketamine injection (PND 11) and at 10  weeks of age. Dopamine (DA) tissue levels and DA turnover were also evaluated in the NAcc at the same time points. Levels of 8-hydroxy-2'-deoxyguanosine (8-OHdG), a reliable biomarker of oxidative stress, as well as of the free radical producers NOX1 and NOX2 enzymes, were also assessed in both PFC and NAcc of ketamine-treated pups and adult mice. Ketamine-treated pups showed increased cortical levels of glutamate (GLU) and glutamine, as well as similar GABA amount compared to controls, together with an early reduction of cortical PV levels. In the adult period, the same was observed for GLU and PV, whereas GABA levels were increased and no changes in glutamine amount were detected. Ketamine administration in early life induced a decrease in DA tissue levels and an increase of DA turnover which were also detectable at 10 weeks of age. These alterations were accompanied by 8-OHdG elevations in both PFC and NAcc at the two considered life stages. The expression of NOX1 was significantly reduced in these brain regions following ketamine administration at early life stages, while, in the adult period, significant elevation of this enzyme was observed. Levels of NOX2 were found increased at both time points. Our results suggest that an early increase of NOX2-derived oxidative stress may contribute to the development of neurochemical imbalance in PFC and NAcc, induced by ketamine administration. Modifications of NOX1 expression might represent, instead, an early response of the developing brain to a neurotoxic insult, followed by a later attempt to counterbalance ketamine-related detrimental effects.


Assuntos
Química Encefálica/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Antagonistas de Aminoácidos Excitatórios/toxicidade , Ketamina/toxicidade , NADPH Oxidases/metabolismo , Animais , Animais Recém-Nascidos , Química Encefálica/fisiologia , Antagonistas de Aminoácidos Excitatórios/administração & dosagem , Feminino , Ketamina/administração & dosagem , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Espécies Reativas de Oxigênio/metabolismo
7.
Clin Exp Allergy ; 49(5): 626-635, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30689269

RESUMO

BACKGROUND: Different mutations of the angiopoietin-1 gene (ANGPT1) have been associated with the occurrence of hereditary angioedema (HAE). OBJECTIVE: The purpose of the study is to clarify whether the ANGPT1 A119S variant plays its role via haploinsufficiency or a dominant negative effect. METHODS: The ability of ANGPT1 A119S variant to affect the endothelial barrier function was assessed by immunocytochemistry. Inter-endothelial gap formation molecules primarily responsible for cell-cell adhesions of HUVECs, vascular endothelial (VE)-cadherin and ß-catenin, and reorganization of the F-actin cytoskeletal were evaluated. RESULTS: In in vitro conditions mimicking the heterozygous state, the p.A119S variant significantly reduced the capability to bind its natural receptor (80.7% of normal), less than the homozygous condition (59.1%). After stimulation of VEGF or bradykinin, the addiction to equimolar amounts of wtANGPT1 and ANGPT1 p.A119S clearly reduced the expression of VE-cadherin on the endothelial cell surface (31% and 24% respectively). Likewise, cell surface expression of ß-catenin was reduced and severe gap formation between adjacent HUVECs developed. In cultured cells, ß-catenin expression was mostly observed along the cell surface. Treatment with equimolar amounts of wtANGPT1 and ANGPT1 p.A119S failed to restore the reorganization of the F-actin cytoskeletal elements. ANGPT1 p.A119S variant in homozygous condition further diminished VE-cadherin and ß-catenin expression and failed to reduce stress fibre formation significantly affecting the endothelial barrier functionality. CONCLUSIONS AND CLINICAL RELEVANCE: Present data show that in a heterozygous state the p.A119S substitution results in a pathogenic loss of function of the protein due to a mechanism of haploinsufficiency. The ANGPT1 reduced ability to counteract the increment of endothelial permeability produced by inducers, such as VEGF and bradykinin, stimulate vascular leakage and reorganization of the F-actin cytoskeletal elements. As a result, a partial impairment of the ANGPT1 functionality, like when dominant mutations occur, represents a pathophysiological cause of HAE.


Assuntos
Angioedemas Hereditários/etiologia , Angioedemas Hereditários/metabolismo , Angiopoietina-1/genética , Endotélio/metabolismo , Predisposição Genética para Doença , Haploinsuficiência , Actinas/metabolismo , Alelos , Substituição de Aminoácidos , Angioedemas Hereditários/patologia , Angiopoietina-1/metabolismo , Biomarcadores , Bradicinina/farmacologia , Permeabilidade Capilar/efeitos dos fármacos , Permeabilidade Capilar/genética , Células Endoteliais/metabolismo , Endotélio/patologia , Estudos de Associação Genética , Heterozigoto , Humanos , Mutagênese Sítio-Dirigida , Mutação , Ligação Proteica , Receptor TIE-2/metabolismo , Fator A de Crescimento do Endotélio Vascular/farmacologia
8.
Toxins (Basel) ; 10(10)2018 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-30314315

RESUMO

Urea at post-dialysis levels induces increased ROS in a number of cell types. The aim of this study was to determine whether urea-induced production of ROS remains elevated after urea is no longer present, and, if it does, to characterize its origin and effects. Human arterial endothelial cells were incubated with 20 mM urea for two days, and then cells were incubated for an additional two days in medium alone. Maximal ROS levels induced by initial urea continued at the same level despite urea being absent. These effects were prevented by either MnSOD expression or by Nox1/4 inhibition with GKT13781. Sustained urea-induced ROS caused a persistent reduction in mtDNA copy number and electron transport chain transcripts, a reduction in transcription of mitochondrial fusion proteins, an increase in mitochondrial fission proteins, and persistent expression of endothelial inflammatory markers. The SOD-catalase mimetic MnTBAP reversed each of these. These results suggest that persistent increases in ROS after cells are no long exposed to urea may play a major role in continued kidney damage and functional decline despite reduction of urea levels after dialysis.


Assuntos
Células Endoteliais/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Ureia/farmacologia , Células Cultivadas , Células Endoteliais/metabolismo , Humanos , Mitocôndrias/fisiologia , Dinâmica Mitocondrial/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
9.
Atherosclerosis ; 263: 127-136, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28641152

RESUMO

BACKGROUND AND AIMS: The pathogenic events responsible for the reduction of endothelial progenitor cell (EPC) number and function seen in patients with chronic renal failure (CRF) are poorly understood. Here we investigate the hypothesis that increased concentrations of urea associated with CRF increase ROS production directly in EPCs, causing abnormalities associated with coronary artery disease risk. METHODS: Human EPCs were isolated from peripheral blood mononuclear cells of healthy donors and cultured in the presence or absence of 20 mmol/L urea. RESULTS: Urea at concentrations seen in CRF induced ROS production in cultured EPCs. Urea-induced ROS reduced the number of endothelial cell colony forming units, uptake and binding of Dil-Ac-LDL and lectin-1, and the ability to differentiate into CD31- and vascular endothelial growth factor receptor 2-positive cells. Moreover, urea-induced ROS generation accelerated the onset of EPC senescence, leading to a senescence-associated secretory phenotype (SASP). Normalization of mitochondrial ROS production prevented each of these effects of urea. CONCLUSIONS: These data suggest that urea itself causes both reduced EPC number and increased EPC dysfunction, thereby contributing to the pathogenesis of cardiovascular disease in CRF patients.


Assuntos
Senescência Celular , Células Progenitoras Endoteliais/citologia , Espécies Reativas de Oxigênio/metabolismo , Ureia/química , Adenoviridae , Diferenciação Celular , Doença da Artéria Coronariana/sangue , Doença da Artéria Coronariana/diagnóstico , Humanos , Falência Renal Crônica/sangue , Leucócitos Mononucleares/citologia , Mitocôndrias/metabolismo , NADPH Oxidases/metabolismo , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
10.
Turk Pediatri Ars ; 52(4): 187-193, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29483797

RESUMO

Chronic kidney disease in children is an irreversible process that may lead to end-stage renal disease. The mortality rate in children with end-stage renal disease who receive dialysis increased dramatically in the last decade, and it is significantly higher compared with the general pediatric population. Furthermore, dialysis and transplant patients, who have developed end-stage renal disease during childhood, live respectively far less as compared with age/race-matched populations. Different reports show that cardiovascular disease is the leading cause of death in children with end-stage renal disease and in adults with childhood-onset chronic kidney disease, and that children with chronic kidney disease are in the highest risk group for the development of cardiovascular disease. Urea, which is generated in the liver during catabolism of amino acids and other nitrogenous metabolites, is normally excreted into the urine by the kidneys as rapidly as it is produced. When renal function is impaired, increasing concentrations of blood urea will steadily accumulate. For a long time, urea has been considered to have negligible toxicity. However, the finding that plasma urea is the only significant predictor of aortic plaque area fraction in an animal model of chronic renal failure -accelerated atherosclerosis, suggests that the high levels of urea found in chronic dialysis patients might play an important role in accelerated atherosclerosis in this group of patients. The aim of this review was to provide novel insights into the role played by urea in the pathogenesis of accelerated cardiovascular disease in renal failure.

11.
Exp Cell Res ; 348(1): 46-55, 2016 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-27590528

RESUMO

The pathophysiology of cystic fibrosis (CF) airway disease stems from mutations in the CF Transmembrane Conductance Regulator (CFTR) gene, leading to a chronic respiratory disease. Actin cytoskeleton is disorganized in CF airway epithelial cells, likely contributing to the CF-associated basic defects, i.e. defective chloride secretion and sodium/fluid hypersorption. In this work, we aimed to find whether this alteration could be pointed out by means of Atomic Force Microscopy (AFM) investigation, as roughness and Young's elastic module. Moreover, we also sought to determine whether disorganization of actin cytoskeleton is linked to hypersoption of apical fluid. Not only CFBE41o- (CFBE) cells, immortalized airway epithelial cells homozygous for the F508del CFTR allele, showed a different morphology in comparison with 16HBE14o- (16HBE) epithelial cells, wild-type for CFTR, but also they displayed a lack of stress fibers, suggestive of a disorganized actin cytoskeleton. AFM measurements showed that CFBE cells presented a higher membrane roughness and decreased rigidity as compared with 16HBE cells. CFBE overexpressing wtCFTR became more elongated than the parental CFBE cell line and presented actin stress fibers. CFBE cells absorbed more fluid from the apical compartment. Study of fluid absorption with the F-actin-depolymerizing agent Latrunculin B demonstrated that actin cytoskeletal disorganization increased fluid absorption, an effect observed at higher magnitude in 16HBE than in CFBE cells. For the first time, we demonstrate that actin cytoskeleton disorganization is reflected by AFM parameters in CF airway epithelial cells. Our data also strongly suggest that the lack of stress fibers is involved in at least one of the early step in CF pathophysiology at the levels of the airways, i.e. fluid hypersorption.


Assuntos
Brônquios/patologia , Fibrose Cística/patologia , Células Epiteliais/patologia , Microscopia de Força Atômica/métodos , Citoesqueleto de Actina/metabolismo , Líquidos Corporais/metabolismo , Linhagem Celular , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Forma Celular , Módulo de Elasticidade , Células Epiteliais/metabolismo , Humanos
12.
Atherosclerosis ; 239(2): 393-400, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25682038

RESUMO

OBJECTIVE: The pathogenic events responsible for accelerated atherosclerosis in patients with chronic renal failure (CRF) are poorly understood. Here we investigate the hypothesis that concentrations of urea associated with CRF and increased ROS production in adipocytes might also increase ROS production directly in arterial endothelial cells, causing the same pathophysiologic changes seen with hyperglycemia. METHODS: Primary cultures of human aortic endothelial cells (HAEC) were exposed to 20mM urea for 48 h. C57BL/6J wild-type mice underwent 5/6 nephrectomy or a sham operation. Randomized groups of 5/6 nephrectomized mice and their controls were also injected i.p. with a SOD/catalase mimetic (MnTBAP) for 15 days starting immediately after the final surgical procedure. RESULTS: Urea at concentrations seen in CRF induced mitochondrial ROS production in cultured HAEC. Urea-induced ROS caused the activation of endothelial pro-inflammatory pathways through the inhibition of GAPDH, including increased protein kinase C isoforms activity, increased hexosamine pathway activity, and accumulation of intracellular AGEs (advanced glycation end products). Urea-induced ROS directly inactivated the anti-atherosclerosis enzyme PGI2 synthase and also caused ER stress. Normalization of mitochondrial ROS production prevented each of these effects of urea. In uremic mice, treatment with MnTBAP prevented aortic oxidative stress, PGI2 synthase activity reduction and increased expression of the pro-inflammatory proteins TNFα, IL-6, VCAM1, Endoglin, and MCP-1. CONCLUSIONS: Taken together, these data show that urea itself, at levels common in patients with CRF, causes endothelial dysfunction and activation of proatherogenic pathways.


Assuntos
Endotélio Vascular/patologia , Falência Renal Crônica/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Ureia/química , Animais , Antígenos CD/metabolismo , Aorta/metabolismo , Aterosclerose/enzimologia , Aterosclerose/metabolismo , Aterosclerose/fisiopatologia , Catalase/metabolismo , Quimiocina CCL2/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Endoglina , Células Endoteliais/metabolismo , Endotélio/enzimologia , Endotélio Vascular/efeitos dos fármacos , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/metabolismo , Humanos , Interleucina-6/metabolismo , Oxirredutases Intramoleculares/metabolismo , Falência Renal Crônica/induzido quimicamente , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo , Distribuição Aleatória , Receptores de Superfície Celular/metabolismo , Superóxido Dismutase/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Molécula 1 de Adesão de Célula Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...