Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Biotechnol J ; 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38733093

RESUMO

Protein complexes from edible oyster mushrooms (Pleurotus sp.) composed of pleurotolysin A2 (PlyA2) and pleurotolysin B (PlyB) exert toxicity in feeding tests against Colorado potato beetle (CPB) larvae, acting through the interaction with insect-specific membrane sphingolipid. Here we present a new strategy for crop protection, based on in planta production of PlyA2/PlyB protein complexes, and we exemplify this strategy in construction of transgenic potato plants of cv Désirée. The transgenics in which PlyA2 was directed to the vacuole and PlyB to the endoplasmic reticulum are effectively protected from infestation by CPB larvae without impacting plant performance. These transgenic plants showed a pronounced effect on larval feeding rate, the larvae feeding on transgenic plants being on average five to six folds lighter than larvae feeding on controls. Further, only a fraction (11%-37%) of the larvae that fed on transgenic potato plants completed their life cycle and developed into adult beetles. Moreover, gene expression analysis of CPB larvae exposed to PlyA2/PlyB complexes revealed the response indicative of a general stress status of larvae and no evidence of possibility of developing resistance due to the functional inactivation of PlyA2/PlyB sphingolipid receptors.

2.
Front Plant Sci ; 14: 1232367, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37662165

RESUMO

The pathogenicity of intracellular plant pathogenic bacteria is associated with the action of pathogenicity factors/effectors, but their physiological roles for most phytoplasma species, including 'Candidiatus Phytoplasma solani' are unknown. Six putative pathogenicity factors/effectors from six different strains of 'Ca. P. solani' were selected by bioinformatic analysis. The way in which they manipulate the host cellular machinery was elucidated by analyzing Nicotiana benthamiana leaves after Agrobacterium-mediated transient transformation with the pathogenicity factor/effector constructs using confocal microscopy, pull-down, and co-immunoprecipitation, and enzyme assays. Candidate pathogenicity factors/effectors were shown to modulate plant carbohydrate metabolism and the ascorbate-glutathione cycle and to induce autophagosomes. PoStoSP06, PoStoSP13, and PoStoSP28 were localized in the nucleus and cytosol. The most active effector in the processes studied was PoStoSP06. PoStoSP18 was associated with an increase in phosphoglucomutase activity, whereas PoStoSP28, previously annotated as an antigenic membrane protein StAMP, specifically interacted with phosphoglucomutase. PoStoSP04 induced only the ascorbate-glutathione cycle along with other pathogenicity factors/effectors. Candidate pathogenicity factors/effectors were involved in reprogramming host carbohydrate metabolism in favor of phytoplasma own growth and infection. They were specifically associated with three distinct metabolic pathways leading to fructose-6-phosphate as an input substrate for glycolysis. The possible significance of autophagosome induction by PoStoSP28 is discussed.

3.
4.
Plant Physiol ; 191(3): 1934-1952, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36517238

RESUMO

TGA (TGACG-binding) transcription factors, which bind their target DNA through a conserved basic region leucine zipper (bZIP) domain, are vital regulators of gene expression in salicylic acid (SA)-mediated plant immunity. Here, we investigated the role of StTGA2.1, a potato (Solanum tuberosum) TGA lacking the full bZIP, which we named a mini-TGA. Such truncated proteins have been widely assigned as loss-of-function mutants. We, however, confirmed that StTGA2.1 overexpression compensates for SA-deficiency, indicating a distinct mechanism of action compared with model plant species. To understand the underlying mechanisms, we showed that StTGA2.1 can physically interact with StTGA2.2 and StTGA2.3, while its interaction with DNA was not detected. We investigated the changes in transcriptional regulation due to StTGA2.1 overexpression, identifying direct and indirect target genes. Using in planta transactivation assays, we confirmed that StTGA2.1 interacts with StTGA2.3 to activate StPRX07, a member of class III peroxidases (StPRX), which are known to play role in immune response. Finally, via structural modeling and molecular dynamics simulations, we hypothesized that the compact molecular architecture of StTGA2.1 distorts DNA conformation upon heterodimer binding to enable transcriptional activation. This study demonstrates how protein truncation can lead to distinct functions and that such events should be studied carefully in other protein families.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica , Fatores de Transcrição , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ativação Transcricional , Expressão Gênica , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Regulação da Expressão Gênica de Plantas
5.
Sci Data ; 9(1): 685, 2022 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-36357404

RESUMO

We developed pISA-tree, a straightforward and flexible data management solution for organisation of life science project-associated research data and metadata. pISA-tree was initiated by end-user requirements thus its strong points are practicality and low maintenance cost. It enables on-the-fly creation of enriched directory tree structure (project/Investigation/Study/Assay) based on the ISA model, in a standardised manner via consecutive batch files. Templates-based metadata is generated in parallel at each level enabling guided submission of experiment metadata. pISA-tree is complemented by two R packages, pisar and seekr. pisar facilitates integration of pISA-tree datasets into bioinformatic pipelines and generation of ISA-Tab exports. seekr enables synchronisation with the FAIRDOMHub repository. Applicability of pISA-tree was demonstrated in several national and international multi-partner projects. The system thus supports findable, accessible, interoperable and reusable (FAIR) research and is in accordance with the Open Science initiative. Source code and documentation of pISA-tree are available at https://github.com/NIB-SI/pISA-tree .


Assuntos
Disciplinas das Ciências Biológicas , Gerenciamento de Dados , Metadados , Software , Projetos de Pesquisa
6.
Hortic Res ; 9: uhac147, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36072839

RESUMO

MicroRNAs (miRNAs) are small noncoding RNAs, which modulate the abundance and spatiotemporal accumulation of target mRNAs at transcriptional and post-transcriptional levels and through that play important roles in several biological processes in plants. Here we show that in polyploid species, CRISPR/Cas9 system can be used for fine-tuning of miRNA expression, which can have broader range of applications compared to knock-out mutants. We established the complete pipeline for CRISPR-Cas9-mediated modulation of miRNA expression in potato. It consists of (1) design and assembly of dual sgRNA CRISPR/Cas9 constructs, (2) transient transfection of protoplasts following fast and efficient screening by high resolution melting analysis to select functional sgRNAs, and (3) stable transformation of potato explants with functional sgRNAs and selection of regenerated transgenic lines with desired mutations and desired miRNA abundance based on sequencing and RT-qPCR. We show that miRNA-editing using dual sgRNA approach results in different types of mutations among transgenic lines but also in different alleles of the same plant, which are target site-dependent. The most frequent were short deletions, but we also detected 1-nt insertions (T or G), deletions between two sgRNAs and larger deletions. miRNA abundance correlates with the frequency and type of introduced mutations, as more extensive mutations in more alleles result in lower miRNA abundance. Interestingly, some mutated loci can generate alternative miRNAs, now novel targets were however predicted for those. In all transgenic lines with Cas9 expression, we detected mutations, suggesting high efficiency of Cas9-editing. We confirmed the miRNA-editing efficiency of our optimised approach in two different potato genotypes and three different loci.

7.
Front Plant Sci ; 13: 935819, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35958211

RESUMO

TGA transcription factors are essential regulators of various cellular processes, their activity connected to different hormonal pathways, interacting proteins and regulatory elements. Belonging to the basic region leucine zipper (bZIP) family, TGAs operate by binding to their target DNA sequence as dimers through a conserved bZIP domain. Despite sharing the core DNA-binding sequence, the TGA paralogues exert somewhat different DNA-binding preferences. Sequence variability of their N- and C-terminal protein parts indicates their importance in defining TGA functional specificity through interactions with diverse proteins, affecting their DNA-binding properties. In this review, we provide a short and concise summary on plant TGA transcription factors from a structural point of view, including the relation of their structural characteristics to their functional roles in transcription regulation.

8.
Int J Mol Sci ; 23(10)2022 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-35628379

RESUMO

One of the earliest hallmarks of plant immune response is production of reactive oxygen species (ROS) in different subcellular compartments, which regulate plant immunity. A suitable equilibrium, which is crucial to prevent ROS overaccumulation leading to oxidative stress, is maintained by salicylic acid (SA), a chief regulator of ROS. However, ROS not only act downstream of SA signaling, but are also proposed to be a central component of a self-amplifying loop that regulates SA signaling as well as the interaction balance between different phytohormones. The exact role of this crosstalk, the position where SA interferes with ROS signaling and ROS interferes with SA signaling and the outcome of this regulation, depend on the origin of ROS but also on the pathosystem. The precise spatiotemporal regulation of organelle-specific ROS and SA levels determine the effectiveness of pathogen arrest and is therefore crucial for a successful immune response. However, the regulatory interplay behind still remains poorly understood, as up until now, the role of organelle-specific ROS and SA in hypersensitive response (HR)-conferred resistance has mostly been studied by altering the level of a single component. In order to address these aspects, a sophisticated combination of research methods for monitoring the spatiotemporal dynamics of key players and transcriptional activity in plants is needed and will most probably consist of biosensors and precision transcriptomics.


Assuntos
Ácido Salicílico , Estresse Fisiológico , Plantas , Espécies Reativas de Oxigênio , Transdução de Sinais
9.
Methods Mol Biol ; 2447: 261-270, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35583788

RESUMO

The role of programmed cell death (PCD) in hypersensitive response (HR)-conferred resistance depends on the type of host-pathogen interaction and therefore has to be studied for each individual pathosystem. Here we present and explain the protocol for studying the role of PCD in HR-conferred resistance in potato plants in the interaction with the viral pathogen. As an experimental system, we use genotype Rywal, where the virus spread is restricted and HR PCD develops 3 days post potato virus Y (PVY) inoculation. As a control of virus multiplication and spread, we include its transgenic counterpart impaired in salicylic acid (SA) accumulation (NahG-Rywal), in which the HR-PCD occurs but the spread of the virus is not restricted. To follow the occurrence of virus-infected cells and/or virus multiplication outside the cell death zone, we use GFP-tagged PVY (PVY-N605(123)-GFP) which can be monitored by confocal microscopy. Any other plant-pathogen system which results in PCD development could be studied using a modified version of this protocol.


Assuntos
Potyvirus , Solanum tuberosum , Morte Celular , Vírus de DNA , Microscopia Confocal , Doenças das Plantas/genética , Potyvirus/genética , Potyvirus/metabolismo , Ácido Salicílico/metabolismo , Solanum tuberosum/genética
10.
Methods Mol Biol ; 2379: 81-97, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35188657

RESUMO

Plant synthetic biology requires the design of plant expression vectors with multiple transcriptional units, which can be challenging. Here we describe the use of Plant X-tender toolbox complemented with a plant grammar implemented in GenoCAD for design, cloning and delivery of several transcriptional units into the plant genome. Plant X-tender toolbox consists of a set of plant expression vectors and the protocols for the most efficient cloning of multiple transcriptional units into this novel vector set. Together with the plant grammar implemented in GenoCAD, the presented strategy allows the users to quickly design genetic modules and assemble them into Plant X-tender expression vectors for in planta functional studies or synthetic biology applications.


Assuntos
Vetores Genéticos , Biologia Sintética , Clonagem Molecular , Vetores Genéticos/genética , Genoma de Planta , Plantas/genética , Biologia Sintética/métodos
11.
Life (Basel) ; 11(3)2021 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-33800034

RESUMO

Biosensors are indispensable tools to understand a plant's immunity as its spatiotemporal dimension is key in withstanding complex plant immune signaling. The diversity of genetically encoded biosensors in plants is expanding, covering new analytes with ever higher sensitivity and robustness, but their assortment is limited in some respects, such as their use in following biotic stress response, employing more than one biosensor in the same chassis, and their implementation into crops. In this review, we focused on the available biosensors that encompass these aspects. We show that in vivo imaging of calcium and reactive oxygen species is satisfactorily covered with the available genetically encoded biosensors, while on the other hand they are still underrepresented when it comes to imaging of the main three hormonal players in the immune response: salicylic acid, ethylene and jasmonic acid. Following more than one analyte in the same chassis, upon one or more conditions, has so far been possible by using the most advanced genetically encoded biosensors in plants which allow the monitoring of calcium and the two main hormonal pathways involved in plant development, auxin and cytokinin. These kinds of biosensor are also the most evolved in crops. In the last section, we examine the challenges in the use of biosensors and demonstrate some strategies to overcome them.

12.
Front Plant Sci ; 11: 1250, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32973826

RESUMO

Colorado potato beetle (CPB) is an agricultural pest of solanaceous crops, notorious for its rapid resistance development to chemical pesticides. Foliar spraying of dsRNA formulations is a promising innovative technology providing highly specific and environmentally acceptable option for CPB management. We designed dsRNA to silence CPB mesh gene (dsMESH) and performed laboratory feeding trials to assess impacts on beetle survival and development. We compared the effectiveness of in vivo and in vitro produced dsRNA in a series of laboratory experiments. We additionally performed a field trial in which the efficacy of dsRNA sprayed onto potato foliage was compared to a spinosad-based insecticide. We showed that dsMESH ingestion consistently and significantly impaired larval growth and decreased larval survival in laboratory feeding experiments. In vivo produced dsRNA performed similarly as in vitro synthesized dsRNA in laboratory settings. In the field trial, dsMESH was as effective in controlling CPB larvae as a commercial spinosad insecticide, its activity was however slower. We discuss limitations and benefits of a potential dsMESH-based CPB management strategy and list some important RNAi based CPB research topics, which will have to be addressed in future.

13.
Plant J ; 104(3): 645-661, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32772469

RESUMO

Whereas the activation of resistance (R) proteins has been intensively studied, the downstream signaling mechanisms leading to the restriction of the pathogen remain mostly unknown. We studied the immunity network response conditioned by the potato Ny-1 gene against potato virus Y. We analyzed the processes in the cell death zone and surrounding tissue on the biochemical and gene expression levels in order to reveal the spatiotemporal regulation of the immune response. We show that the transcriptional response in the cell death zone and surrounding tissue is dependent on salicylic acid (SA). For some genes the spatiotemporal regulation is completely lost in the SA-deficient line, whereas other genes show a different response, indicating multiple connections between hormonal signaling modules. The induction of NADPH oxidase RBOHD expression occurs specifically on the lesion border during the resistance response. In plants with silenced RBOHD, the functionality of the resistance response is perturbed and the spread of the virus is not arrested at the site of infection. RBOHD is required for the spatial accumulation of SA, and conversely RBOHD is under the transcriptional regulation of SA. Using spatially resolved RNA-seq, we also identified spatial regulation of an UDP-glucosyltransferase, another component in feedback activation of SA biosynthesis, thus deciphering a novel aspect of resistance signaling.


Assuntos
Potyvirus/genética , Solanum tuberosum/metabolismo , Solanum tuberosum/virologia , Regulação da Expressão Gênica de Plantas/genética , Doenças das Plantas/genética , Doenças das Plantas/virologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Potyvirus/patogenicidade , Espécies Reativas de Oxigênio/metabolismo , Ácido Salicílico/metabolismo
14.
Sci Data ; 7(1): 249, 2020 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-32709858

RESUMO

Although the reference genome of Solanum tuberosum Group Phureja double-monoploid (DM) clone is available, knowledge on the genetic diversity of the highly heterozygous tetraploid Group Tuberosum, representing most cultivated varieties, remains largely unexplored. This lack of knowledge hinders further progress in potato research. In conducted investigation, we first merged and manually curated the two existing partially-overlapping DM genome-based gene models, creating a union of genes in Phureja scaffold. Next, we compiled available and newly generated RNA-Seq datasets (cca. 1.5 billion reads) for three tetraploid potato genotypes (cultivar Désirée, cultivar Rywal, and breeding clone PW363) with diverse breeding pedigrees. Short-read transcriptomes were assembled using several de novo assemblers under different settings to test for optimal outcome. For cultivar Rywal, PacBio Iso-Seq full-length transcriptome sequencing was also performed. EvidentialGene redundancy-reducing pipeline complemented with in-house developed scripts was employed to produce accurate and complete cultivar-specific transcriptomes, as well as to attain the pan-transcriptome. The generated transcriptomes and pan-transcriptome represent a valuable resource for potato gene variability exploration, high-throughput omics analyses, and breeding programmes.


Assuntos
Solanum tuberosum/genética , Tetraploidia , Transcriptoma , Genoma de Planta , Melhoramento Vegetal , RNA-Seq
15.
Viruses ; 12(2)2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-32075268

RESUMO

Potato virus Y (PVY) is the most economically important virus affecting potato production. PVY manipulates the plant cell machinery in order to successfully complete the infecting cycle. On the other side, the plant activates a sophisticated multilayer immune defense response to combat viral infection. The balance between these mechanisms, depending on the plant genotype and environment, results in a specific outcome that can be resistance, sensitivity, or tolerance. In this review, we summarize and compare the current knowledge on molecular events, leading to different phenotypic outcomes in response to PVY and try to link them with the known molecular mechanisms.


Assuntos
Doenças das Plantas/virologia , Imunidade Vegetal , Potyvirus/patogenicidade , Solanum tuberosum/genética , Solanum tuberosum/virologia , Genótipo , Doenças das Plantas/imunologia , Reguladores de Crescimento de Plantas/imunologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transdução de Sinais , Solanum tuberosum/imunologia
16.
Bio Protoc ; 10(14): e3692, 2020 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-33659360

RESUMO

Potato virus Y (PVY), the type member of the genus Potyvirus (family Potyviridae), is the most widespread virus affecting potato and is included in the top five most economically detrimental plant viruses. Recently, the structure of the PVY virion has been determined by cryo-electron microscopy, which has opened the doors to functional studies that explore the involvement of selected amino acids in different stages of the viral cycle. The only way to functionally challenge in planta the role of particular amino acids in the coat protein of PVY, or in other viral proteins, is by using cDNA clones. The use and manipulation of PVY cDNA clones, unlike those of other potyviruses, has been traditionally impaired by the toxicity that certain sequences within the PVY genome pose to Escherichia coli. Here, we describe the use of a published PVY cDNA clone, which harbours introns that overcome the aforementioned toxicity, to explore the effects of different coat protein modifications on viral infection. The protocol includes manipulation of the cDNA clone in E. coli, biolistic inoculation of plants with the constructed clones, observation of the biological effects on plants, quantification of cDNA clones by reverse transcription quantitative PCR, and confirmation of virion formation by transmission electron microscopy. Future possibilities involve the use of PVY cDNA clones tagged with fluorescent protein reporters to allow further insights into the effects of coat protein mutations on the cell-to-cell movement of PVY virions.

17.
Sci Adv ; 5(7): eaaw3808, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31328164

RESUMO

Potato virus Y (PVY) is among the most economically important plant pathogens. Using cryoelectron microscopy, we determined the near-atomic structure of PVY's flexuous virions, revealing a previously unknown lumenal interplay between extended carboxyl-terminal regions of the coat protein units and viral RNA. RNA-coat protein interactions are crucial for the helical configuration and stability of the virion, as revealed by the unique near-atomic structure of RNA-free virus-like particles. The structures offer the first evidence for plasticity of the coat protein's amino- and carboxyl-terminal regions. Together with mutational analysis and in planta experiments, we show their crucial role in PVY infectivity and explain the ability of the coat protein to perform multiple biological tasks. Moreover, the high modularity of PVY virus-like particles suggests their potential as a new molecular scaffold for nanobiotechnological applications.


Assuntos
Proteínas do Capsídeo/química , Modelos Moleculares , Potyvirus/fisiologia , Conformação Proteica , Sequência de Aminoácidos , Sítios de Ligação , Capsídeo/química , Capsídeo/metabolismo , Proteínas do Capsídeo/metabolismo , Doenças das Plantas/virologia , Potyvirus/ultraestrutura , Ligação Proteica , RNA Viral/química , RNA Viral/metabolismo , Relação Estrutura-Atividade , Vírion
18.
Plant Physiol ; 178(1): 488-499, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29934298

RESUMO

To develop novel crop breeding strategies, it is crucial to understand the mechanisms underlying the interaction between plants and their pathogens. Network modeling represents a powerful tool that can unravel properties of complex biological systems. In this study, we aimed to use network modeling to better understand immune signaling in potato (Solanum tuberosum). For this, we first built on a reliable Arabidopsis (Arabidopsis thaliana) immune signaling model, extending it with the information from diverse publicly available resources. Next, we translated the resulting prior knowledge network (20,012 nodes and 70,091 connections) to potato and superimposed it with an ensemble network inferred from time-resolved transcriptomics data for potato. We used different network modeling approaches to generate specific hypotheses of potato immune signaling mechanisms. An interesting finding was the identification of a string of molecular events illuminating the ethylene pathway modulation of the salicylic acid pathway through Nonexpressor of PR Genes1 gene expression. Functional validations confirmed this modulation, thus supporting the potential of our integrative network modeling approach for unraveling molecular mechanisms in complex systems. In addition, this approach can ultimately result in improved breeding strategies for potato and other sensitive crops.


Assuntos
Etilenos/metabolismo , Redes Reguladoras de Genes , Modelos Genéticos , Ácido Salicílico/metabolismo , Transdução de Sinais/genética , Solanum tuberosum/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Produtos Agrícolas/genética , Produtos Agrícolas/metabolismo , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas , Melhoramento Vegetal/métodos , Imunidade Vegetal/genética , Solanum tuberosum/metabolismo
19.
Front Plant Sci ; 9: 168, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29497431

RESUMO

Hypersensitive response (HR)-conferred resistance to viral infection restricts the virus spread and is accompanied by the induction of cell death, manifested as the formation of necrotic lesions. While it is known that salicylic acid is the key component in the orchestration of the events restricting viral spread in HR, the exact function of the cell death in resistance is still unknown. We show that potato virus Y (PVY) can be detected outside the cell death zone in Ny-1-mediated HR in potato plants (cv. Rywal), observed as individual infected cells or small clusters of infected cells outside the cell death zone. By exploiting the features of temperature dependent Ny-1-mediated resistance, we confirmed that the cells at the border of the cell death zone are alive and harbor viable PVY that is able to reinitiate infection. To get additional insights into this phenomenon we further studied the dynamics of both cell death zone expansion and occurrence of viral infected cell islands outside it. We compared the response of Rywal plants to their transgenic counterparts, impaired in SA accumulation (NahG-Rywal), where the lesions occur but the spread of the virus is not restricted. We show that the virus is detected outside the cell death zone in all lesion developmental stages of HR lesions. We also measured the dynamics of lesions expansion in both genotypes. We show that while rapid lesion expansion is observed in SA-depleted plants, virus spread is even faster. On the other hand the majority of analyzed lesions slowly expand also in HR-conferred resistance opening the possibility that the infected cells are eventually engulfed by cell death zone. Taken altogether, we suggest that the HR cell death is separated from the resistance mechanisms which lead to PVY restriction in Ny-1 genetic background. We propose that HR should be regarded as a process where the dynamics of events is crucial for effectiveness of viral arrest albeit the exact mechanism conferring this resistance remains unknown.

20.
PLoS One ; 13(1): e0190526, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29300787

RESUMO

Cloning multiple DNA fragments for delivery of several genes of interest into the plant genome is one of the main technological challenges in plant synthetic biology. Despite several modular assembly methods developed in recent years, the plant biotechnology community has not widely adopted them yet, probably due to the lack of appropriate vectors and software tools. Here we present Plant X-tender, an extension of the highly efficient, scar-free and sequence-independent multigene assembly strategy AssemblX, based on overlap-depended cloning methods and rare-cutting restriction enzymes. Plant X-tender consists of a set of plant expression vectors and the protocols for most efficient cloning into the novel vector set needed for plant expression and thus introduces advantages of AssemblX into plant synthetic biology. The novel vector set covers different backbones and selection markers to allow full design flexibility. We have included ccdB counterselection, thereby allowing the transfer of multigene constructs into the novel vector set in a straightforward and highly efficient way. Vectors are available as empty backbones and are fully flexible regarding the orientation of expression cassettes and addition of linkers between them, if required. We optimised the assembly and subcloning protocol by testing different scar-less assembly approaches: the noncommercial SLiCE and TAR methods and the commercial Gibson assembly and NEBuilder HiFi DNA assembly kits. Plant X-tender was applicable even in combination with low efficient homemade chemically competent or electrocompetent Escherichia coli. We have further validated the developed procedure for plant protein expression by cloning two cassettes into the newly developed vectors and subsequently transferred them to Nicotiana benthamiana in a transient expression setup. Thereby we show that multigene constructs can be delivered into plant cells in a streamlined and highly efficient way. Our results will support faster introduction of synthetic biology into plant science.


Assuntos
Genes de Plantas , Família Multigênica , Plantas/genética , Vetores Genéticos , Reação em Cadeia da Polimerase , Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...