Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mar Drugs ; 19(10)2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34677446

RESUMO

Marine gastropods of the genus Conus, comprising more than 800 species, have the characteristic of injecting worms and other prey with venom. These conopeptide toxins, highly diverse in structure and action, are highly potent and specific for their molecular targets (ion channels, receptors, and transporters of the prey's nervous system), and thus are important research tools and source for drug discovery. Next-generation sequencing technologies are speeding up the discovery of novel conopeptides in many of these species, but only limited information is available for Conus spurius, which inhabits sandy mud. To search for new precursor conopeptides, we analyzed the transcriptome of the venous ducts of C. spurius and identified 55 putative conotoxins. Seven were selected for further study and confirmed by Sanger sequencing to belong to the M-superfamily (Sr3.M01 and Sr3.M02), A-superfamily (Sr1.A01 and Sr1.A02), O-superfamily (Sr15.O01), and Con-ikot-ikot (Sr21.CII01 and Sr22.CII02). Six of these have never been reported. To our knowledge, this report is the first to use high-throughput RNA sequencing for the study of the diversity of C. spurius conotoxins.


Assuntos
Conotoxinas/química , Caramujo Conus/genética , Animais , Sequenciamento de Nucleotídeos em Larga Escala
2.
Artigo em Inglês | MEDLINE | ID: mdl-34371172

RESUMO

Benzo[α]pyrene (BaP), a lipophilic polycyclic aromatic hydrocarbon (PAH), is a contaminant widely distributed in aquatic systems. Its presence in freshwater organisms is of great concern; particularly in Nile tilapia (Oreochromis niloticus), due to its economic relevance. The aim of this study is to evaluate the effects of acute and sub-chronic BaP exposures on molecular growth/development responses, toxicity to DNA pathways and xenobiotic metabolism. Negative morphometric changes (the growth condition factor, hepatosomatic and gonadosomatic indices), the fluorescent aromatic compounds (FACs) in bile were also studied in order to understand the mechanisms of action of BaP. Genes involved in the growth hormone GH/insulin-like growth factor 1 (IGF-1) were measured, such as IGF1-2 with the growth hormone receptor gene expression GHR1-2, and the endocrine disruption biomarker vitellogenin (VTG). Acute exposure elicited changes in the GH/IGF axis, mainly in the GHR1 and in IGF1 mRNA levels without affecting the GHR2 expression. While sub-chronic exposure had less effect on both GHR and IGF genes. The most notable tissue-specific effects and morphometric endpoints were observed upon sub-chronic exposure, such as changes in key genes involved in detoxification, DNA damage, and altered reproductive morphological endpoints; showing that sub-chronic BaP doses have longer-lasting toxic effects. This study shows that sub-chronic BaP exposure may compromise the health of Nile tilapia and sheds light on the changes of the GH/IGF axis and the biotransformation of the xenobiotics due to the presence of this contaminant.


Assuntos
Benzo(a)pireno/toxicidade , Ciclídeos/crescimento & desenvolvimento , Ciclídeos/genética , Expressão Gênica/efeitos dos fármacos , Animais , Ciclídeos/metabolismo , Exposição Ambiental , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Perfilação da Expressão Gênica , Masculino , Poluentes Químicos da Água/toxicidade
3.
Artigo em Inglês | MEDLINE | ID: mdl-32992212

RESUMO

Toxaphene is an organochlorine pesticide and environmental contaminant that is concerning due to its atmospheric transport and persistence in soil. In Florida, toxaphene and other organochlorine pesticides were used heavily in agriculture on the north shore of Lake Apopka and they are still detectable in soil. Wild largemouth bass that inhabit the lake and the marshes along the north shore have been exposed to a variety of organochlorine pesticides including dieldrin, methoxychlor, and p,p'-DDE, among others. While these other organochlorine pesticides have been studied for their endocrine disrupting effects in largemouth bass, there is little information for toxaphene. In this study, male and female largemouth bass were given food containing 50 mg/kg toxaphene for almost 3 months, to achieve tissue levels similar to those found in fish at Lake Apopka. Sex-specific toxicity was then evaluated by measuring various reproductive endpoints and transcriptomic changes. In females, gonadosomatic index showed a trend towards reduction (p = 0.051) and plasma vitellogenin was reduced by ~40% relative to controls. However plasma levels of 17ß-estradiol and testosterone were not perturbed by toxaphene exposure. These data suggest that toxaphene does not act as a weak estrogen as many other organochlorine pesticides do, but rather appears to be acting as an antiestrogen in female fish. There were no obvious changes in the gonadosomatic index and plasma hormones in male bass. However, ex vivo explant experiments revealed that toxaphene prevented human chorionic gonadotropin-stimulated testosterone production in the testis. This suggested that toxaphene had anti-androgenic effects in males. Subsequent transcriptomic analyses of the testis revealed that androgen receptor/beta-2-microglobulin signaling was up-regulated while insulin-related pathways were suppressed with toxaphene, which could be interpreted as a compensatory response to androgen suppression. In the male liver, the transcriptome analysis revealed an overwhelming suppression in immune-related signaling cascades (e.g. lectin-like receptor and ITSM-Containing Receptor signaling, CD16/CD14 Proinflammatory Monocyte Activation, and CD38/CD3-JUN/FOS/NF-kB Signaling in T-cell Proliferation). Overall, this study showed that toxaphene induced sex-specific effects. The transcriptomic and physiological responses observed can contribute to the development of adverse outcome pathways for toxaphene exposure in fish.


Assuntos
Regulação da Expressão Gênica/efeitos dos fármacos , Gônadas/fisiologia , Fígado/fisiologia , Reprodução , Toxafeno/toxicidade , Transcriptoma/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Animais , Bass , Disruptores Endócrinos/toxicidade , Feminino , Gônadas/efeitos dos fármacos , Inseticidas/toxicidade , Fígado/efeitos dos fármacos , Masculino
4.
Genes (Basel) ; 10(5)2019 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-31083386

RESUMO

The Pelibuey sheep (Ovis aries) is an indigenous breed distributed in the tropical regions of Mexico. The prolificacy of this sheep is on average from 1 to 1.5 lambs, being an important breeding characteristic that owners seek to increase with the purpose of economic improvements. New-generation RNA sequencing technology has been used to identify the genes that are expressed in the ovarian tissue of sheep that have two or more lambs per parturition, as well as to elucidate the metabolic pathways that are affected by the expression of these genes, with the purpose of better understanding the prolificacy in the sheep. In the present study, the transcriptional expression of multiparous and uniparous sheep was compared using RNA sequencing. Multiparous (M group) and uniparous (U group) sheep that had a genealogical record for three generations (M, n = 5 and U, n = 5) were selected. RNA was extracted from ovarian tissue and subsequently used to prepare the libraries that were sequenced using the Illumina NextSeq500 platform. A total of 31,575 genes were detected from the transcriptomic analysis of which 4908 were significantly expressed (p-value ≤ 0.001) in the ovary of sheep. Subsequently, a second filter was carried out to evaluate the false discovery rate (FDR) and select those genes with p-values ≤ 0.05 and values of expression ≥ 1 (log2), obtaining 354 differential expressed genes (DEG): 120 genes up-regulated and 234 genes down-regulated in the group M with respect to the group U. Through Gene Ontology (GO) and metabolic analysis, we obtained information on the function of differentially expressed genes, and its importance in the reproduction of multiparous sheep. This result suggest that genes identified in the present study participate in the development of the final stages of follicles.


Assuntos
Tamanho da Ninhada de Vivíparos/genética , Ovário/metabolismo , Ovinos/genética , Animais , Feminino , RNA-Seq
5.
Artigo em Inglês | MEDLINE | ID: mdl-30771562

RESUMO

The common bottlenose dolphin (Tursiops truncatus) is a carnivorous cetacean that thrives in marine environments, one of the apex predators of the marine food web. They are found in coastal and estuarine ecosystems, which are known to be sensitive to environmental impacts. Dolphins are considered sentinel organisms for monitoring the health of coastal marine ecosystems due to their role as predators that can bioaccumulate contaminants. Although recent studies have focused on capturing the circulating metabolomes of these mammals, and in the context of pollutants and exposures in the marine environment, skin and blubber are important surface and protective tissues that have not been adequately probed for metabolism. Using a proton nuclear magnetic resonance spectroscopy (1H NMR) based metabolomics approach, we quantified 51 metabolites belonging to 74 different metabolic pathways in the skin and blubber of stranded bottlenose dolphin (n = 4) samples collected at different localities in the Southern Zone coast of Yucatan Peninsula of Mexico. Results indicate that metabolism of skin and blubber are quantitatively very different. These metabolite abundances could help discriminate the tissue-types using supervised partial least square regression discriminant analysis (PLSDA). Further, using hierarchical clustering analysis and random forest analysis of the metabolite abundances, the results pointed to unique metabolites that are important classifiers of the tissue-type. On one hand, the differential metabolic patterns, mainly linking fatty acid metabolism and ketogenic amino acids, seem to constitute a characteristic of blubber, thus pointing to fat synthesis and deposition. On the other hand, the skin showed several metabolites involved in gluconeogenic pathways, pointing towards an active anabolic energy-generating metabolism. The most notable pathways found in both tissues included: urea cycle, nucleotide metabolism, amino acid metabolism, glutathione metabolism among others. Our 1H NMR metabolomics analysis allowed the quantification of metabolites associated with these two organs, i.e., pyruvic acid, arginine, ornithine, 2-hydroxybutyric acid, 3-hydroxyisobutyric acid, and acetic acid, as discriminatory and classifying metabolites. These results would lead to further understanding of the functional and physiological roles of dolphin skin and blubber metabolism for better efforts in their conservation, as well as useful target biopsy tissues for monitoring of dolphin health conditions in marine pollution and ecotoxicology studies.


Assuntos
Golfinho Nariz-de-Garrafa/metabolismo , Redes e Vias Metabólicas , Pele/metabolismo , Animais , Feminino , Gluconeogênese , Metabolismo dos Lipídeos , Masculino , Metaboloma , Metabolômica , Espectroscopia de Prótons por Ressonância Magnética
6.
Data Brief ; 20: 1500-1509, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30258954

RESUMO

Benzo(a)pyrene (BaP), the prototype of polycyclic aromatic hydrocarbons, is known to exhibits genotoxic and carcinogenic effects promoting molecular impacts. The dataset presented here is associated with the research article paper entitled "Transcriptome Analysis Reveals Novel Insights Into the Response of Low-dose Benzo(a)pyrene Exposure in Male Tilapia". In this article, we presented a transcriptomic characterization of male tilapia exposure to BaP in the short term. This data provides an extended analysis of changes in the gene expression and identification of pathways in the liver and testis of male tilapia exposure to BaP. We used gene set enrichment analysis (GSEA) and sub-network enrichment analysis (SNEA) to identify gene networks and pathways associated with molecular adverse effects of BaP exposure. The data indicates that target pathways related to promoting carcinogenesis such as DNA repair and DNA replication were affected as well as other crucial biological processes. Moreover, to determine whether some of the key reported genes of DNA damage are affected by BaP exposure, Quantitative PCR (qPCR) was performed. Gene set categories and sub-networks are provided and the corresponding signature differences from BaP exposure are listed. The information in these datasets may contribute to understanding the potential carcinogenesis mechanism of action from low BaP exposure.

7.
Aquat Toxicol ; 201: 162-173, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29913432

RESUMO

Despite a wide number of toxicological studies that describe benzo[a]pyrene (BaP) effects, the metabolic mechanisms that underlie these effects in fish are largely unknown. Of great concern is the presence of BaP in aquatic systems, especially those in close proximity to human activity leading to consumption of potentially contaminated foods. BaP is a known carcinogen and it has been reported to have adverse effects on the survival, development and reproduction of fish. The purpose of this study was to investigate if a low dose of BaP can alter genes and key metabolic pathways in the liver and testis in male adult tilapia, and whether these could be associated with biological endpoints disruption. We used both high-throughput RNA-Sequencing to assess whole genome gene expression following repeated intraperitoneal injections of 3 mg/kg of BaP (every 6 days for 26 days) and morphometric endpoints as indicators of general health. Condition factor (K) along with hepatosomatic and gonadosomatic indices (morphometric parameters) were significantly lower in BaP-treated fish than in controls. BaP exposure induced important changes in the gene expression pattern in liver and testis as revealed by both Pathway and Gene Ontology (GO) analyses. Alterations that were shared by both tissues included arachidonic acid metabolism, androgen receptor to prostate-specific antigen signaling, and insulin-associated effects on lipogenesis. The most salient liver-specific effects included: biological processes involved in detoxification, IL6-associated insulin resistance, mTOR hyperactivation, mitotic cytokinesis, spindle pole and microtubule binding. BaP effects that were confined to the testis included: immune system functions, inflammatory response, estrogen and androgen metabolic pathways. Taken together, gene expression and morphometric end point data indicate that the reproductive success of adult male tilapia could be compromised as a result of BaP exposure. These results constitute new insights on the mechanism of action of low dose BaP in a non-model organism (tilapia).


Assuntos
Benzo(a)pireno/toxicidade , Exposição Ambiental/análise , Perfilação da Expressão Gênica/métodos , Tilápia/genética , Animais , Bile/metabolismo , Ontologia Genética , Masculino , Redes e Vias Metabólicas/efeitos dos fármacos , Redes e Vias Metabólicas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transcriptoma/genética , Poluentes Químicos da Água/toxicidade
8.
Artigo em Inglês | MEDLINE | ID: mdl-26907229

RESUMO

Perfluorinated chemicals (PFASs) stem from a wide range of sources and have been detected in aquatic ecosystems worldwide, including the upper Midwest and the state of Minnesota in the USA. This study investigated whether fish with high body burden levels of PFASs in the Twin Cities Metro Areas showed any evidence of adverse effects at the level of the transcriptome. We hypothesized that fish with higher body burden levels of PFASs would exhibit molecular responses in the liver and testis that were suggestive of oxidative and general stress, as well as impaired reproduction. Concentrations of PFASs in largemouth bass varied significantly across the sampled lakes, with the lowest concentrations of PFASs found in fish from Steiger and Upper Prior Lakes and the highest concentrations found in fish from Calhoun and Twin Lakes. Largemouth bass with high PFAS concentrations exhibited changes in the expression of genes related to lipid metabolism, energy production, RNA processing, protein production/degradation and contaminant detoxification, all of which are consistent with biomarker responses observed in other studies with PFASs. However, given the wide range of genes that were differentially expressed across the lakes and the variability observed in the mechanisms through which biological processes were affected, it is unlikely that PFASs are the only stressors affecting largemouth bass in the Twin Cities Metro Areas lakes. Indeed, Twin Lake is affected by the Joslyn superfund site which contains polycyclic aromatic hydrocarbons, pentachlorophenol, polychlorinated biphenyls, and dioxins. These compounds are also expected to drive the transcriptomics responses observed, but to what degree is difficult to ascertain at this time.


Assuntos
Bass/genética , Poluentes Ambientais/farmacologia , Fluorocarbonos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Fígado/metabolismo , Testículo/metabolismo , Transcriptoma/efeitos dos fármacos , Animais , Bass/crescimento & desenvolvimento , Lagos , Fígado/efeitos dos fármacos , Masculino , Minnesota , Testículo/efeitos dos fármacos
9.
Toxicol Rep ; 3: 414-426, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28959563

RESUMO

Acrylamide is known to produce follicular cell tumors of the thyroid in rats. RccHan Wistar rats were exposed in utero to a carcinogenic dose of acrylamide (3 mg/Kg bw/day) from gestation day 6 to delivery and then through their drinking water to postnatal day 35. In order to identify potential mechanisms of carcinogenesis in the thyroid glands, we used a transcriptomics approach. Thyroid glands were collected from male pups at 10 PM and female pups at 10 AM or 10 PM in order to establish whether active exposure to acrylamide influenced gene expression patterns or pathways that could be related to carcinogenesis. While all animals exposed to acrylamide showed changes in expected target pathways related to carcinogenesis such as DNA repair, DNA replication, chromosome segregation, among others; animals that were sacrificed while actively drinking acrylamide-laced water during their active period at night showed increased changes in pathways related to oxidative stress, detoxification pathways, metabolism, and activation of checkpoint pathways, among others. In addition, thyroid hormones, triiodothyronine (T3) and thyroxine (T4), were increased in acrylamide-treated rats sampled at night, but not in quiescent animals when compared to controls. The data clearly indicate that time of day for sample collection is critical to identifying molecular pathways that are altered by the exposures. These results suggest that carcinogenesis in the thyroids of acrylamide treated rats may ensue from several different mechanisms such as hormonal changes and oxidative stress and not only from direct genotoxicity, as has been assumed to date.

10.
Aquat Toxicol ; 156: 148-60, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25203422

RESUMO

17Alpha-ethinylestradiol (EE2), used for birth control in humans, is a potent estrogen that is found in wastewater at low concentrations (ng/l). EE2 has the ability to interfere with the endocrine system of fish, affecting reproduction which can result in population level effects. The objective of this study was to determine if dietary exposure to EE2 would alter gene expression patterns and key pathways in the liver and ovary and whether these could be associated with reproductive endpoints in female largemouth bass during egg development. Female LMB received 70ng EE2/g feed (administered at 1% of body weight) for 60 days. EE2 dietary exposure significantly reduced plasma vitellogenin concentrations by 70%. Hepatosomatic and gonadosomatic indices were also decreased with EE2 feeding by 38.5% and 40%, respectively. Transcriptomic profiling revealed that there were more changes in steady state mRNA levels in the liver compared to the ovary. Genes associated with reproduction were differentially expressed, such as vitellogenin in the liver and aromatase in the gonad. In addition, a set of genes related with oxidative stress (e.g. glutathione reductase and glutathione peroxidase) were identified as altered in the liver and genes associated with the immune system (e.g. complement component 1, and macrophage-inducible C-type lectin) were altered in the gonad. In a follow-up study with 0.2ng EE2/g feed for 60 days, similar phenotypic and gene expression changes were observed that support these findings with the higher concentrations. This study provides new insights into how dietary exposure to EE2 interferes with endocrine signaling pathways in female LMB during a critical period of reproductive oogenesis.


Assuntos
Bass , Dieta , Etinilestradiol/toxicidade , Transdução de Sinais , Poluentes Químicos da Água/toxicidade , Animais , Aromatase/genética , Bass/genética , Bass/metabolismo , Sistema Endócrino/efeitos dos fármacos , Feminino , Seguimentos , Regulação da Expressão Gênica/efeitos dos fármacos , Fígado/efeitos dos fármacos , Ovário/efeitos dos fármacos , Vitelogeninas/sangue , Vitelogeninas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...